1.气象(气候)因素

2.气象、天气和气候有什么区别?

3.气象( 气候) 因素

4. 气候条件与气象灾害

5.气候,物候,气象,天气

气象和气候_气象和气候之间的差别是什么

天气

是一定

区域

时段

内的大气状态(如冷暖、

风雨

干湿

、阴晴等)及其变化的总称

气候是长时间内

气象要素

和天气

现象的平均或统计状态,

时间尺度

为月、季、年、数年到数百年以上。气候以冷、暖、干、湿这些

特征

来衡量,通常由某一

时期

的平均值和离差值

表征

气象是指大气的状态和现象

例如刮风、闪电、打雷、结霜、下雪等

可以理解成

天气是短时间的大气状态和现象

气候是长时间的气象要素和天气现象

气象则是大气状态和现象

气象(气候)因素

气候包括温度,湿度,气压,风力,降水量,大气粒子数及众多其他气象要素在很长时期及特定区域内的统计数据。与气候相比,天气是指这些气象要素在近两周内的实时状态。

气象(俗称天气)是短时间内的大气物理状态。天气是指一个地区短时间局部的,临时的大气现象。气候是指一个地区长时间的大气平均物理状态。

大气层中气体的温度是气温,是气象学常用名词。

气象学是把大气当作研究的客体,从定性和定量两方面来说明大气特征的学科,集中研究大气的天气情况和变化规律和对天气的预报。气象学是大气科学的一个分支。

气象、天气和气候有什么区别?

自然地理因素包括地形、气象、水文及植被等方面。由于各地区自然地理条件不同,决定了一个地区地下水的形成条件和变化规律,使各地区的地下水具有独特的性质。下面着重介绍气象因素和水文因素对地下水的形成和变化的影响。

自然界中水循环的重要环节———蒸发、降水,都与大气的物理状态密切相关。气象要素包括气温、气压、风向、风力、湿度、蒸发和降水等这些决定大气物理状态的因素。这种大气的物理状态称为天气。而某一地区天气的多年平均状态(用气象要素的多年平均值来表示)称为该地区的气候。气象和气候因素对水的形成与分布具有重要影响。对地下水的形成而言,虽然变化缓慢的气候因素起着极为重要的影响作用,但变化迅速的气象要素,则对地下水发生着显著的影响。这其中以降水、蒸发及气温的影响最大。

1.气温

大气具有一定的温度称为气温。一切复杂的天气变化,主要是气温条件不同而引起的。气温的变化会直接影响地下水温度的变化,水温变化会使地下水中的气体成分发生变化。例如由于温度的增高,气体活跃性增大,一部分气体就要从水中逸出,从而减少地下水中气体成分的含量;水中气体含量的降低,又会引起地下水化学成分的变化。此外,由于热力增加,地下水蒸发作用加强,水量就减少,水的浓度增加。

2.湿度

大气中水汽的含量称为空气湿度。大气中水汽含量变化不定,占空气总量的0.01%~4%,其中70%分布在0~3.5km的高度内。

水汽具有重量,所以有压力,因此,表示空气中水汽含量多少可以用重量或压力表示。湿度分为绝对湿度和相对湿度两种。

绝对湿度:为某一地区某一时刻空气中水汽的含量。用重量单位时,以1m3空气中所含水汽克数(g/m3)表示,表示符号为m;用压力单位时,为空气中所含水汽分压相当于水银柱高度的毫米数或以毫巴表示,表示符号为e。

空气中绝对湿度变化很大,主要受气温、地表面性质等因素的影响。在温暖地带和辽阔水面或潮湿土壤上空,绝对湿度较大。在气温低的地区,空气绝对湿度则很小。

空气中可容纳水汽的数量和温度有密切关系,温度越高,可容纳的水汽数量越多;反之越少。某一温度下,空气中所能容纳的最大水汽数量,称为该温度下的饱和水汽含量。同样也可用重量单位或压力单位表示,两种情况分别用符号M和E表示。不同温度下的饱和水汽含量,见表1-2。

表1-2 不同温度下的饱和水汽含量

绝对湿度只能说明某一时刻空气中水汽含量的多少,而不能说明空气中的水分是否达到饱和,因此,又有相对湿度的概念。

相对湿度:绝对湿度与饱和水汽含量之比为相对湿度(r)。即

普通水文地质学

尽管空气绝对湿度不变,当气温下降时,则相对湿度增加。当相对湿度达到100%时,说明空气中水汽已达到饱和状态。空气中水汽达到饱和时的气温称为露点。当气温低于露点以下时,多余的水汽就要凝结发生降水。

3.降水

当空气的温度低于露点时,空气中多余的水汽就要凝结,以液态或固态形式降落到地表称为降水。气象部门用雨量计测定降水量,以某一地区某一时期的降水总量平铺于地面得到水层高度的毫米数表示。如某地区年降水量为1000mm,即表示降落在该地区的水量平铺在该区水平面积上,该水层高度为1000mm。

降水是水循环的主要环节之一,一个地区降水量的大小,决定了该地区水的丰富程度,对地下水的形成具有重要影响。大气降水渗入地下,对地下水的补给最为普遍,它是地下水最重要的来源。大气降水补给作用的强弱主要取决于两个方面:一是大气降水(特别是降雨、降雪)的强度、延续时间;另一方面是当地的入渗条件,如包气带的岩性和厚度、地形、植被等。如单位时间内所降下的雨量(降雨强度)大,延续时间长,则可能补给的地下水量就多;当入渗条件好,如地表岩土透水性好,地形平坦,植被良好,则入渗作用就强,补给地下水就多。

不同类型的降雨对地下水的补给是不一样的。

暴雨:历时短而强度大。按气象部门的惯例,当日降雨量大于50mm或12h降雨量大于30mm的降雨称为暴雨。这种雨一般笼罩面积不大,降雨过程短,一般说来降雨大部分来不及渗入地下而变为地表径流流走,而且往往强烈冲刷地表,甚至改变地表原来的结构。但在平坦的裸露砂砾石层地区和植被覆盖较好的地区,仍然可有相当多的水渗入地下。

细雨:历时不久,雨量小,雨滴小。这种雨往往一边下,一边极易蒸发,对地下水补给的意义不大。

*雨:历时久,强度小,笼罩面积大,在地表条件适当时,这种雨可以大量地补给地下水,对地下水的补给具有很大的意义。

暴*雨:历时久,平均强度大,常常酿成地面的洪涝灾害,它对地下水的影响也是显著的,它常常破坏原有的地表结构,对矿坑和某些工程带来威胁。

在分析大气降水的补给作用时,不但要考虑绝对的降水量,还应考虑降水的性质(如延续时间、强度),降水形式(液态、固态)和降水的类型等。在水文地质调查时,应收集降水的月平均、年平均及多年平均资料。

4.蒸发

水在常温下,由液态变为气态进入大气的过程称为蒸发。自然界的蒸发可以在水面、岩石土壤表面和植物的枝叶上进行。所以根据蒸发性质的不同,可分为水面蒸发、土面蒸发和叶面蒸发三种。蒸发量仍以水层厚度毫米数表示。

(1)水面蒸发

水面蒸发是指在一个地区,一定时间内地表水体表面水分的蒸发。其蒸发量的大小用水面蒸发皿来测定,其值以蒸发度表示,它表示一个地区蒸发能力的大小。

水面蒸发量的大小受许多因素影响,它与蒸发面的温度、空气饱和差、风速、气压等有关。蒸发面的温度越高,饱和差越大,风速越大,气压越低,则蒸发速度越快,蒸发量越大。

(2)土面蒸发

土面蒸发是指在一个地区,一定时间内土壤表面水分的蒸发。土面蒸发量除了气温、饱和差、风速、气压外,还与地下水的埋藏条件、土壤性质有关。一般当地下水埋藏较浅时,由于土壤毛细作用,将地下水吸至地表,蒸发量加大;埋藏较深,蒸发量就小。土壤颗粒越细,土壤层经常保持的水分就多,则蒸发量就大。

(3)叶面蒸发

叶面蒸发是指在一个地区,一定时间内某种植物叶面水分的蒸发,其蒸发过程称为蒸腾(蒸散)。

必须注意,气象部门提供的蒸发量,只能说明蒸发的相对强度(蒸发度),它不代表实际的蒸发水量。

最后介绍气压与地下水的关系和潮湿系数的概念。

大气的质量施加于地面的压力称为气压,常用毫米水银柱高度表示。在标准状态下的气压为760mmHg高度,即约相当于105Pa。

各地气压的差异引起空气流动,冷暖空气交锋,形成降雨。我国东部由于受季风的影响,故降雨大多集中于夏季,而冬季寒冷干燥。气压变化可影响地下水位升降,从而引起泉水流量变化。如气压下降,泉水流量有增高的现象。

潮湿系数(KB)是指一个地区的年降水量(X)与年蒸发度(Z)(水面蒸发值)的比值。

普通水文地质学

潮湿系数的大小反映了一个地区水分的丰缺和气候的干湿特性。KB越大,说明地区水量越丰富;反之,则蒸发越强烈,水分越缺乏。前者有利于地下水的形成,而后者不利于地下水的形成。地区的潮湿程度与潮湿系数的关系如下:

普通水文地质学

普通水文地质学

气象( 气候) 因素

地球上覆盖着很厚的空气层,叫做大气。在大气中我们看到阴 、晴、冷、暖、干、湿、雨、雪、雾、风、雷等各种物理、化学状态和现象,气象就是它们的通称。

天气和气候是互相联系的。天气是指一个地区较短时间的大气状况。我们从广播和电视中收听收看到的24、48小时天气预报说的是天气。

而气候则是一个地区多年的平均天气状况及其变化特征。世界气象组织规定,30年记录为得出气候特征的最短年限。我国古代以五日为候,三候为气,一年有二十四节气七十二候,各有气象、物候特征,合称为气候。

 气候条件与气象灾害

自然界中水循环的重要环节———蒸发、降水都与大气的物理状态密切相关。气象要素包括气温、气压、风向、风力、湿度、蒸发和降水等这些决定大气物理状态的因素,用气象要素表示的大气物理状态称为天气。而某一地区天气的多年平均状态(用气象要素的多年平均值来表示)称为该地区的气候。气象和气候因素对水的形成与分布具有重要影响。对地下水的形成而言,虽然变化缓慢的气候因素起着极为重要的影响作用,但变化迅速的气象要素,则对地下水有着显著的影响。这其中以降水、蒸发及气温的影响最大。

1.气温

大气具有一定的温度称为气温。一切复杂的天气变化,主要是气温条件不同而引起的。气温的变化会直接影响地下水温度的变化,水温变化则会使地下水中的气体成分发生变化。例如由于温度的增高,气体活跃性增大,一部分气体就要从水中逸出,从而降低地下水中气体成分的含量;水中气体成分含量的降低,又会引起地下水化学成分的变化。此外,由于热力增加,地下水蒸发作用加强,水量就减少,水的浓度增加。

2.湿度

大气中水汽的含量称为空气湿度。大气中水汽含量变化不定,为空气总量的0.01%~4%,其中70%分布在0~3.5km的高度内。

水汽具有质量,所以有压力,因此,表示空气中水汽含量多少可以用质量或压力表示。湿度分为绝对湿度和相对湿度两种。

绝对湿度:为某一地区某一时刻空气中水汽的含量。用质量单位时,以1m3空气中所含水汽克数(g/m3)表示,表示符号为m;用压力单位时,为空气中所含水汽分压相当于水银柱高度的毫米数或以毫巴表示,表示符号为e。

空气中绝对湿度变化很大,主要受气温、地表面性质等因素的影响。在温暖地带和辽阔水面或潮湿土壤上空,绝对湿度较大。在气温低的地区,空气绝对湿度则很小。

空气中可容纳水汽的数量和温度有密切关系,温度越高,可容纳的水汽数量越多,反之越少。某一温度下,空气中所能容纳最大的水汽数量,称为该温度下的饱和水汽含量。同样也可用质量单位(M),或压力单位(E)表示。不同温度下的饱和水汽含量,如表1-2所示。

表1-2 不同温度下的饱和水汽含量

绝对湿度只能说明某一时刻空气中水汽含量的多少,而不能说明空气中的水分是否达到饱和,因此,又有相对湿度的概念。

相对湿度(r):绝对湿度与饱和水汽含量之比。即

水文地质学概论

尽管空气绝对湿度不变,当气温下降时,则相对湿度增加。当相对湿度达到l00%时,说明空气中水汽已达到饱和状态。空气中水汽达到饱和时的气温称为露点。

3.降水

当空气的温度低于露点时,空气中多余的水汽便会凝结,以液态或固态形式降落到地表称为降水。降水量以水层厚度的毫米数表示。如某地区年降水量为1000mm,即表示降落在该地区的水量平铺在该区水平面积上,该水层厚度为1000mm。

降水是水循环的主要环节之一,一个地区降水量的大小,决定了该地区水的丰富程度,对地下水的形成具有重要影响。大气降水渗入地下,对地下水的补给最为普遍,它是地下水最重要的来源。大气降水补给作用的强弱主要取决于两个方面:一方面是大气降水(特别是降雨、降雪)的强度、延续时间;另一方面是当地的入渗条件,如包气带的岩性和厚度、地形、植被等。如单位时间内降雨量(降雨强度)大,延续时间长,则可能补给的地下水量就多;当入渗条件好,如地表岩土透水性好,地形平坦,植被良好,则入渗作用就强,补给地下水就多。

不同类型的降雨对地下水的补给是不一样的。

1)暴雨:历时短而强度大。按气象部门的惯例,当日降雨量大于50mm或12h降雨量大于30mm的降雨称为暴雨。这种雨一般笼罩面积不大,降雨过程短。一般说来降雨大部分来不及入渗地下而变为地面径流流走,而且往往强烈冲刷地表,甚至改变地表原来的结构。但在平坦的、裸露的砂砾石层地区和植被覆盖较好的地区,仍然可有相当多的水渗入地下。

2)细雨:历时短,雨量小,雨滴小。这种雨往往一边下,一边极易蒸发,对地下水补给极小,意义不大。

3)*雨:历时久,强度小,笼罩面积大,在地表条件适当时,这种雨可以大量地补给地下水,对地下水的补给具有很大的意义。

4)暴*雨:历时久,平均强度大,常常酿成地面的洪涝灾害,它对地下水的影响也是显著的。它也常常破坏原有的地表结构,对矿坑和某些工程带来威胁。

我国幅员辽阔,地势复杂,各地区降水分布极不均匀。总的来说,由沿海向内陆地区降水量逐渐减少;南方降水量大于北方;山区降水量又常比附近平原区多。在我国台湾的中央山脉区,年平均降水量在3000mm以上;长江流域年降水量在1000mm以上;黄河流域降水量多为500mm;西北地区降水量在250mm以下;塔里木盆地降水量不足50mm;新疆若羌年降水量不足5mm,是我国最干旱的地区。

我国降水主要集中在夏季,其中以七、八月份为最多。这种情况,在东北及华北最为显著。

在分析大气降水的补给作用时,不但要考虑绝对的降水量,还应考虑降水的性质(如延续时间、强度),降水形式(液态、固态)和降水的类型等。在水文地质调查时,应收集降水的月平均、年平均及多年平均资料。

4.蒸发

水在常温下,由液态变为气态进入大气的过程称为蒸发。自然界的蒸发可以在水面、岩石土壤表面和植物的枝叶上进行。所以根据蒸发性质的不同,可分为水面蒸发、土面蒸发和叶面蒸发3种。蒸发量仍以水层厚度的毫米数表示。

(1)水面蒸发

是指在一个地区一定时间内地表水体表面水分的蒸发。其蒸发量的大小用水面蒸发皿来测定,其值以蒸发度表示,它表示一个地区蒸发能力的大小。

水面蒸发量的大小受许多因素影响,它与蒸发面的温度、空气饱和差、风速、气压等有关。蒸发面的温度越高,饱和差越大,风速越大,气压越低,则蒸发速度越快,蒸发量越大。

(2)土面蒸发

是指在一个地区一定时间内土壤表面水分的蒸发。土面蒸发量除了气温、饱和差、风速、气压外,还与地下水的埋藏条件、土壤性质有关。一般当地下水埋藏较浅时,由于土壤毛细作用,将地下水吸至地表,蒸发量加大;埋藏较深,蒸发量就小。土壤颗粒越细,土壤层经常保持的水分越多,则蒸发量就越大。

(3)叶面蒸发

是指在一个地区一定时间内某种植物叶面水分的蒸发,其蒸发过程叫蒸腾(蒸散)。

必须注意,气象部门提供的蒸发量,只能说明蒸发的相对强度(蒸发度),它不代表实际的蒸发水量。

大气的质量施加于地面的压力称为气压,常用毫米水银柱高度表示。在标准状态下(气温为0℃、纬度为45°的海平面上)的气压为760mm水银柱高度,即约相当105Pa。

各地气压的差异引起空气流动,冷暖空气交锋,形成降雨。我国东部处于季风气候影响下,故降雨大多集中于夏季,而冬季寒冷干燥。气压变化可影响地下水位升降,从而引起泉水流量变化。如气压下降,泉水流量有增大的现象。

潮湿系数(KB)是指一个地区的年降水量(X)与年蒸发度(Z)(水面蒸发值)的比值。

水文地质学概论

潮湿系数的大小反映了一个地区水分的丰缺和气候的干湿特性。KB愈大,说明地区水量愈丰富;反之,则蒸发强烈,水分缺乏。前者,有利于地下水的形成,而后者不利于地下水的形成。地区的潮湿程度与潮湿系数的关系如下:

水文地质学概论

上述各种气象资料,可从各地气象站收集到。这些资料在进行水文地质调查时都是必要的,它可以帮助分析地下水的形成,预测地下水的变化。

气象资料收集后要进行整理,整理的图件有两种类型,一种为等值线图,是一种用于大范围的平面图(这种图件水文地质人员很少整理);另一种为变化过程曲线图(图1-2)。

图1-2 北京市潜水水位变化与气象关系曲线图

气候,物候,气象,天气

1.河南省气候条件

(1)气候概况

河南省地跨北暖温带与北亚热带,属季风气候区。据河南省气象局1961~1990年30年的观测资料,年均总辐射量为4500~5200 MJ/m2,北高南低;年均日照为2000~2500小时,日照率为45%~55%,亦为北高南低;年均气温12~15℃(1月份均温-2.7~2.3℃,7月份均温24~28℃),气温分布特点为东、南高,西、北(山区)低;稳定通过10℃累积温度3700~4960℃,通过日数为196~230日,初日在3月下旬至4月中旬,终日在10月下旬至11月初;年均降水量为560~1300 mm,自南向北递减,干燥度 K值为0.7~1.5,属湿润—亚湿润区。

(2)气候区划带划分

选择热量与水分两大类指标进行区划。热量指标选取对作物积极生长有重要意义的日均温稳定通过10℃的累积温度和通过日数;水分指标选取较好反映水分收支的干燥度 K和年降雨量。依河南省1961~1990年气象资料,将我省气候区划指标选定如表10.1.1。气候区划依据上述指标与划分标准,将河南省区划分为2个气候带,10个气候区,24个气候小区(表10.1.3)。

2.河南省气象灾害

(1)热岛与冻害

我省城市普遍存在“热岛”现象。如郑州市热岛强度平均1.9℃,冬春可达2.4℃;晴日夜间城、郊温差可达5~7.5℃,影响高度可达1200 m。工业与火电设施发达区可形成大范围的“热岛”,如在鹤壁、焦作、洛阳(巩义)、汝州、平顶山一带,与同纬度邻区相比,极端最高气温可高出1~2℃,元月份均温高出0.5~2℃,7月份均温高出0.2~0.5℃,≥10℃积温高出100~200℃,稳定通过10℃日数多2~7日。“热岛”效应对其他环境因子会有一定程度的影响,如上述大型热岛区年均降水量比邻区偏少约30 mm。

表10.1.1 河南省气候分区标准

全省极端最低气温在-14~-24℃之间,多出现于元月份强寒潮期。对照元月份均温与年霜冷日数,我省极端低气温出现于林县太行山区、濮阳市—南乐、商丘—永城和伏牛山西段。这些地区年霜冻日超过80 d,元月份均温小于-1℃,或极端最低气温达-20~-24℃。

(2)干旱灾害

旱、涝是河南省最常发的自然灾害。依据我省气候特点确定的旱、涝指标计算(表10.1.2),近30年省内季节性干旱频率达80%~90%。黄河以南初夏旱与秋旱较重,黄河以北春旱与初夏旱较重。全省伏旱危害最重,初夏旱次之。豫北干旱最重,全年累计干旱频率大于70%;豫东平原与豫西浅山丘次之,干旱频率为60%~70%;伏牛山主脉属轻旱区,干旱频率<50%。

表10.1.2 河南省旱、涝灾害标准表

干旱给农业带来重大损失,并引起人畜饮水困难,1986、1988、1991年干旱成灾面积均超过400×104hm2,19年秋旱66.67×104hm2以上的小麦未种上或未出苗。

(3)洪涝灾害

河南雨涝分春、初夏、夏和秋四期,全年雨涝率达50%~70%,以夏涝为主,初夏涝、春涝、秋涝频率以次降低。东部平原、南阳盆地以夏涝为主;淮南以春涝为主。1949~1990年间全省年均涝灾80万hm2,1980、、1989、1991、1992、1998年的涝灾面积均超133万hm2。1950~1999年间共发生较严重的洪涝灾害29次。

河南的洪涝灾害按综合降水量、降水变率、暴雨日数和历史记录,有以下几个暴雨中心:

a.豫北太行山东麓林县一带,年均降水量700~1000mm,较豫北平原多100~400 mm,平均年暴雨(≥50mm/d)多于2日,是太行山暴雨洪水形成的源地;

表10.1.3 河南省气候分区表

b.南召、鲁山一带,年均降雨量800~860 mm,降水变率大于邻区2%~4%,年均暴雨日多于3 d,是唐白河与沙河水系洪水源和伏牛山中段地质灾害的诱因;

c.上蔡、驻马店一带,年均降水量900~1000 mm,较同纬度邻区多50~100 mm,年均暴雨日3~4 d,著名的洪汝河“75.8”暴雨洪水即发生于此区;

d.永城一隅,年均降水大于800 mm,多于邻区100~200 mm,年暴雨日大于3 d;

e.大别山北麓商城、新县一带,年降水1200~1500 mm,年暴雨日大于4 d。

(4)雹灾

豫西北、豫西山地为多雹区,年发生频率0.5~1次。个别地点如辉县沙窑沟,一年雹灾可达6~7次。

(5)大风与沙尘暴

大风指瞬时风速≥17.0 m/s(≥8级)的大风。全省平均大风日为5~15 d。鹤壁、郑州、平顶山一带(豫中)为多风区,年均大风日15~34 d,多于邻区7~27 d,极值出于鹤壁(34 d)。另渑池和永城一带年大风日也多于15 d。沙尘暴日是指强风扬尘造成空气污浊、水平能见度小于1000 m的日数。省内沙尘暴集中发生于黄河冲积平原,尤以黄河故道多沙地区最多,年均沙尘暴日可大于3 d,开封、兰考一线和内黄、南乐一带可达4~7 d。我省每年沙尘暴造成减产达10.6×104~50×104 hm2。2000年4~5月份,大风尘暴日达12 d,严重影响我省黄河流域的城乡环境质量。

(6)干热风

干热风多发于5月中下旬,我省北、东部发生几率较大,南、西部发生几率较小,豫东北平原每10年可达2~8次,淮南与豫西山区每10年可出现1~2次。

气候是长时间内气象要素和天气现象的平均或统计状态,时间尺度为月、季、年、数年到数百年以上。气候以冷、暖、干、湿这些特征来衡量,通常由某一时期的平均值和离差值表征。

气候是地球上某一地区多年时段大气的一般状态 ,是该时段各种天气过程的综合表现。气象要素(温度、降水、风等)的各种统计量(均值、极值 、概率等)是表述气候的基本依据。气候与人类社会有密切关系,许多国家很早就有关于气候现象的记载。中国春秋时代用圭表测日影以确定季节,秦汉时期就有二十四节气、七十二候的完整记载。气候一词源自古希腊文,意为倾斜,指各地气候的冷暖同太阳光线的倾斜程度有关。

由于太阳辐射在地球表面分布的差异,以及海、陆、山脉、森林等不同性质的下垫面在到达地表的太阳辐射的作用下所产生的物理过程不同,使气候除具有温度大致按纬度分布的特征外,还具有明显的地域性特征。按水平尺度大小,气候可分为大气候、中气候与小气候。大气候是指全球性和大区域的气候,如:热带雨林气候、地中海型气候、极地气候、高原气候等;中气候是指较小自然区域的气候,如:森林气候、城市气候、山地气候以及湖泊气候等;小气候是指更小范围的气候,如:贴地气层和小范围特殊地形下的气候(如一个山头或一个谷地)。

在纬度位置、海路分布、大气环流、地形、洋流等因素的影响下,世界气候大致分为以下几种类型:

⑴、寒带苔原气候:冬长而冷,夏短而凉;

⑵、亚寒带针叶林气候:夏季温和,冬季寒冷;

⑶、温带季风气候夏季较暖,冬季较温和;

⑷、温带草原气候:夏暖冬寒;

⑸、温带沙漠气候:夏季炎热干燥,冬季寒冷;

⑹、亚热带雨林气候;

⑺、亚热带季风气候;

⑻、热带沙漠气候:高温少雨;

⑼、热带草原气候:暖季多雨凉季干燥;

⑽、热带雨林气候:高温高湿;

⑾、山地气候:从山麓到山顶垂直变化;

⑿、亚寒带针叶林气候:冬季长而寒冷,夏季短而温暖;

⒀、温带海洋性气候:冬暖夏凉,年温差小;

⒁、亚热带地中海气候:冬季温和少雨,夏季炎热少雨

气候变化对人类与自然系统有重要影响.由于生态系统和人类社会已经适应今天以及最近过去的气候,因此,如果这些变化太快使得生态系统和人类社会不能适应的话,人们将很难应付这些变化.对于许多发展中国家,这可能会对基本的人类生活标准(居住、食物、饮水、健康)产生非常有害的影响。对于所有的国家,极端天气气候发生频率的增加将会增大天气灾害的风险。气候变化对我国经济社会的影响有正面的,也有负面的影响,其中一些变化实际上是不可逆转的,因此我们更要关注的是负面影响。据统计,1950年到2000年,特别是1990年以后气象灾害造成的经济损失急剧增加。原因有两个,一方面极端天气的增多,另一方面我国总体经济体量增加,因此经济损失绝对值大幅升高。

气候变化对农业的影响是负面的。预计到2030年,我国三大作物,即稻米、玉米、小麦,除了浇灌冬小麦以外,均以减产为主。气候变化对水的影响也很大,全球变暖使水循环的过程速度加快,降水的空间不均匀性增加。气候变化对重大工程也有影响,如长江上游降水量的增加,导致地质灾害的频率会增加,对三峡水库的安全运营会造成一定的影响。另外气候变化也会影响青藏铁路和公路,大大增加铁路和公路运行维护的投资。

同全球一样,我国的气候与环境已经发生了巨大的变化。气候变暖远远超出一般意义上的气候问题和环境问题,对我国经济社会发展已经带来十分严峻的威胁,这种威胁仍将持续并不断加剧。科技界应当特别关注气候变化问题,积极取适应和减缓措施,不断提升气候系统、生态、环境保护的层次和水平,这是全面落实科学发展观,建立社会主义和谐社会的重要内容,是、公众和科学家的共同愿望。

什么是物候

现在可以总结一下了。什么是物候?以上那些受环境(气候、水文、土壤)影响而出现的以年为周期的自然现象,都是物候现象。它包括三个方面:(1)各种植物的发芽、展叶、开花、叶变色、落叶等现象;(2)候鸟、昆虫以及其他动物的飞来、初鸣、终鸣、离去、冬眠等;(3)一些水文气象现象,如初霜、终霜、结冰、消融、初雪、终雪等。

有时又根据生物种类分为植物物候、动物物候。动物物候有时又细分为鸟类物候,昆虫物候等。有时还把农作物的生育期称为作物物候,而把其他的统称为自然物候。本书介绍的主要是自然物候。

几千年来农民是很关心物候的,在他们看来,暑去寒来、鸟语花开、秋天红叶都是大自然的语言。杏花开了,就好象大自然在召唤农民赶快春耕;桃花开了,又好象在暗示农民赶快下种;春末夏初,布谷鸟开始唱歌,在农民耳里,它是在唱什么“阿公阿婆、割麦插禾”。很多地方的农民历来是以物候来定季节和农时的。现代研究物候的主要目的,也还是认识自然季节现象的变化规律,服务于农业生产和科学研究。

那么,物候学和气候学有什么不同呢?物候学和气候学有一定的相似之处,它们都是观测一年里各个地方、各个区域季节变化的,都是带地方性的科学;所不同的是,气候学是观测、记录并研究某地的冷暖晴雨、风云变化等现象和变化规律的。物候学则是记录植物的生长荣枯、动物的季节活动,从而了解气候变化对动植物的影响以及自然季节的变化规律的。物候所反映的是过去一段时间里气候条件的积累对生物的综合影响,因而物候学也有人把它归在生物气候学中。

物候虽然由气候所决定,但气候的观测代替不了物候观测。因为农作物都是活生生的生物,影响它生长的因素很多,不是用单因子或几个因子的资料就能说清楚的。而生物之间有着内在的联系,对环境条件的要求有着一定的相似之处,因此以某些野生动植物的物候来定农时有其优越性。贵阳的农谚说:“穷人不听富人哄,阎王刺开花撒谷种(稻种)”,以阎王刺开花来指示和预报水稻的播种期,比其他任何方法都简单可靠。更何况我国丘陵山地区占全国的三分之二以上,一个气象站的记录在山区所能代表的范围有限,而野生动植物各处皆有,只要注意观测,就能对季节和农时提供可靠的信息。可以说,物候是大自然告诉我们季节变化的最直接的语言。

气象

[解释]1.大气的状态和现象,例如刮风、闪电、打雷、结霜、下雪等。

2.气象学。

3.情景;情况。 例如一片新气象。

大气中的冷热、干湿、风、云、雨、雪、霜、雾、雷电等各种物理现象和物理过程的总称。

气象的观测项目有:气温、湿度、地温、风向风速、降水、日照、气压、天气现象等。

气象学研究的对象是大气层内各层大气运动的规律、对流层内发生的天气现象和地面上旱涝冷暖的分布等。如云、雾、雨、雪、冰雹、雷电、台风、寒潮等都是我们常见的天气现象。它的研究范围是地球表面的大气层,厚约3000公里,自下而上可分为对流层、平流层、中间层、然层和外层。

1. 晕

天空中有一层高云,阳光或月光透过云中的冰晶时发生折射和反射,便会在太阳或月亮周围产生彩色光环,光环彩色的排序是内红外紫。称这七色彩环为日晕或月晕,统称为晕。其中对观测者所张的角半径为22度的晕最为常见,称22度晕,偶尔也可看到角半径为46度的晕和其他形式的与晕相近的光弧。由于有卷层云存在才出现晕,而卷层云常处在离锋面雨区数百公里的地方,随着锋面的推进,雨区不久可能移来,因此晕就往往成为阴雨天气的先兆。

2. 华

天空中有一层透光薄云,云中的水滴大小均匀,若是由冰晶组成的云则要求冰晶尺寸均匀。月光或阳光透射云层过程中,受到均匀云滴(水滴或冰晶)的衍射,结果会在月亮或太阳周围紧贴月盘或日盘形成内紫外红的彩环,称为华。因日光太亮,所以人们不易观察到日华,月华则比较常见。紧贴月盘的华又称华盖,通常华盖的紫色不太显著故内环呈青蓝色,其外呈**为主,最外呈红色。有时在华盖外隔一暗圈后还会出现一个甚至几个彩色排序与华盖相同,但亮度弱得多的同心光环,称为副华。

3. 虹和霓

含七种色光的太阳光线,射入大气中的水滴(雨滴或雾滴),各种色光经历折射和反射后,可在雨幕或雾幕上形成彩色光弧环。当光弧环对观测者所张的角半径约42度,光环的彩色排序是内紫外红时,称为虹。

在虹的外面,有时还出现较虹弱的彩色光环,光环对观测者所张的角半径约为52度,彩色环的排序与虹相反即内红外紫,称为霓或副虹。

虹和霓都要背对太阳而立才能观察到。在夏日的傍晚,西方放晴而东方天空有云雨时,最易看到虹和霓。

4. 曙暮光

日出前,即太阳未露出地平线前,阳光照射到高层大气,阳光被大气分子散射,造成天空微亮,地面微明,从这时刻起到太阳露出地平线为止的光亮称曙光。

日落后即太阳西沉到地平线以下后,仍有一段时间阳光可照射到高空大气,因空气分子散射使天空和地面仍维持微明,这段时间的光称暮光。

曙光与暮光合称曙暮光。曙光时段称黎明,暮光时段称黄昏。由于曙光开始与暮光终了的标准不同,通常分为民用曙暮光,航海曙暮光与天文曙暮光。晴朗日子当太阳在地平线以下的角度大约为 7度时,民用曙光开始和暮光终了;大约12度时,航海曙光开始和暮光结束;当大约18度时,天文曙光开始和暮光终了。曙暮光持续的时间在赤道最短,随纬度增加而增加。

相关词:

气象台:对大气进行观测、研究并预报天气的科学机构。规模较小的还有气象站、气象哨等。

气象万千:形容景色和事物多种多样,非常壮观。

天气

The weather

经常不断变化着的大气状态,既是一定时间和空间内的大气状态,也是大气状态在一定时间间隔内的连续变化。所以可以理解为天气现象和天气过程的统称。天气现象是指发生在大气中发生的各种自然现象,即某瞬时内大气中各种气象要素(如气温、气压、湿度、风、云、雾、雨、雪、霜、雷、雹等)空间分布的综合表现。天气过程就是一定地区的天气现象随时间的变化过程。

天气是一定区域短时段内的大气状态(如冷暖、风雨、干湿、阴晴等)及其变化的总称。天气系统通常是指引起天气变化和分布的高压、低压和高压脊、低压槽等具有典型特征的大气运动系统。各种天气系统都具有一定的空间尺度和时间尺度,而且各种尺度系统间相互交织、相互作用。许多天气系统的组合,构成大范围的天气形势,构成半球甚至全球的大气环流。

天气系统总是处在不断新生、发展和消亡过程中,在不同发展阶段有其相对应的天气现象分布。因而一个地区的天气和天气变化是同天气系统及其发展阶段相联系的,是大气的动力过程和热力过程的综合结果。

各类天气系统都是在一定的大气环流和地理环境中形成、发展和演变着,都反映着一定地区的环境特性。比如极区及其周围终年覆盖着冰雪,空气严寒、干燥,这一特有的地理环境成为极区低空冷高压和高空极涡、低槽形成、发展的背景条件。赤道和低纬地区终年高温、潮湿,大气处于不稳定状态,是对流性天气系统产生、发展的必要条件。中高纬度是冷、暖气流经常交绥地带,不仅冷暖气团你来我往交替频繁,而且其斜压不稳定,是锋面、气旋系统得以形成、发展的重要基础。天气系统的形成和活动反过来又会给地理环境的结构和演变以深刻影响。因而认识和掌握天气系统的形成、结构、运动变化规律以及同地理环境间的相互关系,对于了解天气、气候的形成、特征、变化和预测地理环境的演变都是十分重要的。