1.气候变化的统计学解释

2.理论生态学的理论生态学成就

3.细说气候是怎么变化的?

4.利用天然γ测井曲线反演古气候变化

5.气象中的rcp什么意思

6.大数据怎样帮助我们了解气候变化

气候变化的研究方向_气候变化的研究方法

全球变化研究由于全世界的关注取得了很大的进展,对未来全球气候变暖趋势作出了预测。联合国间关于气候变化小组委员会(IPCC)在1992年报告中指出,基于大气层中“温室气体”CO2含量将增加一倍,到2100年地球表面平均气温将升高1.5~4.5℃。气象专家预测,到2025年气温上升1℃,到2050年将上升1.5~2.5℃,到2100年将上升2.5~4.5℃,并对相应发生的全球环境变化和社会影响(旱涝灾害、荒漠化、海面上升、淡水匮缺、陆地生态系统恶化等)作出评估。但是由于全球尺度问题的错综复杂,时间跨度大,地域广阔,有许多不确定因素、机制和规律还未被人们所发现和认识。因此,全球变化研究还有待吸引众多学科的科学家、国家和组织共同攻关,可望在以下几方面取得进展:

1)综合性、多尺度、长期连续的全球观测系统和数据信息系统的建设,这是研究全球变化的基础。现国际上正发展三个相互关联的全球气候、海洋、陆地观测系统,此外还有专门性的、区域性的和国家级的观测系统。美国与有关国家合作拟于1998~2014年间发射一系列极轨卫星和低倾角卫星组成的地球观测系统(EOS),它将提供对陆面、生物圈、固体地球、大气和海洋的至少15a的全球观测。为保证研究全球变化所使用的数据信息质量、加强数据获取、交换的机制和数据的共享,需加强数据组织和科学研究之间以及各数据机构、中心的配合与协调。为此,19年国际IGBP的数据信息系统(DIS)和世界数据中心(WDC)共同研讨数据的管理和共享问题,如WDC如何满足IGBP核心项目对数据的需求,对现有的数据网络系统如何进一步改进和扩充等,提出了要加强海洋生物学、海岸带、水文学、生态学、古气候与古环境以及土地和社会经济等方面数据的使用和改进。此外,还强调了WDC应发展一些跨学科的综合性数据集等。

2)地球内部各圈层及表层的动力学研究对全球气候环境变化的影响。目前地球科学各分支学科已逐步将自己传统的研究焦点与全球变化结合起来。第四纪地质学从研究过去地质历史中的重要和演化过程来预测未来全球变化,获得了新的活力和意义。地幔和地壳中的CO2通过火山喷发和强烈的地震活动进行释放及全球碳循环CO2的源汇问题,大陆地壳动力学的演化、板块运动的驱动机制、造山运动、岩石圈的结构和演化、深部地质作用、地球轨道参数变化周期的变异等对全球气候变化的影响研究将获得进一步加强。

值得提出的是,最新研究认为,地球存在着圈层差异旋转,即地球外层自转减速,内层自转加速。1996年通过地震波测量,发现地球内核旋转速度每年比地壳地幔快1°。这种圈层差异旋转如何影响太阳辐射量的变化,从而控制地球内核能量的释放,产生地球轨道和太阳轨道的全球变化的响应,向地球科学提出了新的挑战。

3)提高研究古气候、古环境变化的时间分辨率和尽可能长的时间序列,发展新的技术方法和测试分析手段。除原来的冰心、黄土等重要支柱外,新发展起来的树轮、湖泊纹泥、珊瑚、洞穴沉积等也是获取高分辨率气候记录的重要载体。近年来发现从泥炭纤维中也可提取古大气CO2浓度、古温度、古湿度等重要气候信息。吉林金川泥炭纤维素的δ18O记录以20年的分辨率描述了过去5000多年气温的变化,甚至通过δ18O记录还获得了太阳活动水平变化与地表温度变化的相关关系。

各种地质、气候突变发生的时间、速率和古气候、古环境的再造都要求一定精度的测年技术和方法。目前除14C法外,还有K-Ar(40K-40Ar,40Ar-39Ar)法,铀系法,裂变径迹(FT)、电子自旋共振(ESR)、氨基酸外消旋(AAR)、热释光(TL)和光释光(OSL)等。根据不同时段、不同测年物质用不同方法。对珊瑚骨骼的测年精度可达年或数年,对树木年轮的精度可达年或季。最近应用AMS14C(加速质谱)测年法,在湖泊、岩溶沉积的分析中,建立了高分辨率的时间系列。Os,O等同位素在沉积物中的比值记录,如18O/16O,87Sr/86Sr,187Os/186Os等可以提供全球地质环境变化的许多信息。如在末次冰期水中18O/16O比值快速变化,显示冷暖气候交替频繁,气候状态很不稳定,在100a内温度可改变幅度约5~6℃。

对古气候的定量研究有用模拟方法,用概念法再造古大气环流和降雨分布,用严格的数值法-能量平衡模式(EBM)和一般循环模式(GCM)再造地质环境。还有用岩性和古生物资料推断古气候。最近生物分子法已开始成为再造古气候古环境一种新的重要手段。尤其是Uk37确定海水表面温度(SST)再造中,可获得很高的分辨率,这为研究小于千年尺度的全球变化提供了条件。

在第30届国际地质大会上反映的新的研究方法有利用澳大利亚、非洲、北美和亚洲浅钻孔温度记录研究全球地表温度变化的百年趋势。这种记录不但容易获得,而且比其他替代性温度指标更为直接。

4)青藏高原隆升对全球环境和气候影响的研究。众所周知,青藏高原自约40Ma前开始隆升,全球气候和环境出现了多次大的变化。尤其是进入第四纪以后,年平均隆升率为1mm。距今2.4~2.5Ma和距今0.6~0.7Ma的隆升导致了大气环流的突然变化,极地降温,形成大冰期。高原的隆升对亚洲甚至全球环境变化的影响至今尚未停止,因此加强对高原隆升的成因和机制的研究,不仅能揭露地球深部作用的过程,还可以进一步弄清对周边环境所产生的影响。

5)人类活动对全球变化的影响研究。1996年4月在德国举行的国际地圈-生物圈(全球变化)第一届大会指出,在全球变化研究中,特别需要重视人类活动对全球变化的影响。人类活动对土地的利用、对海岸带的开发、工业废气的排放等等都在影响着环境和气候。1995年IGBP和HDP(全球环境变化人文)共同拟定了“土地利用/土地覆被变化科学研究”。这主要因为土地利用和土地覆被变化在全球环境变化和可持续发展中占有重要的地位。人类对与土地有关的自然的作用,改变了土地的覆被,从而影响全球环境的变化。反之,全球环境变化又会通过气温、降水、干旱、土地退化等影响土地覆被。这里强调的是如何控制人类经济活动对土地利用的影响。许多国家如美、日和一些国际机构如联合国环境署已认识到,在预测未来50~100年的土地覆被变化趋势中,人类的土地利用活动将起最主要的作用。已开展了用高分辨率雷达、遥感等方法监测分析土地覆被的时空变化,从而取相关的对策。现有人提出要建立“人地系统动力学”,研究地球表层人地系统相互作用动态变化的规律,为区域可持续发展模式的制定提供科学依据。

气候变化的统计学解释

(一)气候变化的科学问题

新一代气候系统模式。开发新一代具有自主知识产权的,包含碳循环过程、地球生物化学过程、陆面、冰盖和生态模式以及高分辨率的海洋和大气环流数值模式的气候系统模式。

气候变化的检测与归因。重建过去两千年以来中国高分辨率气候变化序列,利用气候模式进行气候变化自然和人为因子影响的敏感性试验,确定不同历史时期气候变化的主要影响因子。

气候变化监测预测预警。开发气候变化监测预测预警技术,监测气候变化的过程和要素,模拟预测各种温室气体排放情景下未来全球气候变化情景,预测人类活动影响下全球主要地区未来气候变化,预警极端天气/气候和灾害及其风险评估。

亚洲季风系统与气候变化。研究亚洲季风系统的变化规律及其在全球气候变化中的地位,分析人类活动对亚洲季风系统及气候变化的影响,研究海-陆-气相互作用及其在全球气候异常产生中的作用。

中国极端天气/气候与灾害的形成机理。研究全球变暖背景下中国极端天气/气候与灾害发生频率、强度和空间分布特征的变化规律和趋势,认识气候变暖背景下亚洲和中国区域能量和水循环的变化特征及其与旱涝的关系,研究气候变暖背景下中国沿海海平面变化规律。

冰冻圈变化过程与趋势。研究冰冻圈的气候、水文、生态、环境效应,青藏高原积雪变化对长江中、下游气候影响的机理及其对全球气候变化的响应,研究南北两极、欧亚大陆积雪对中国气候变化的影响。

生态系统能量转化、物质循环对气候变化的响应。研究气候变化背景下生态系统的碳、氮和水循环过程及其耦合机制,以及生态系统结构和过程对气候变化的响应。

(二)控制温室气体排放和减缓气候变化的技术开发

节能和提高能效技术。重点研究开发电力、冶金、石化、化工、建材、交通运输、建筑等各主要高耗能领域的节能和提高能效技术与装备,机电产品节能和提高能效技术,商业和民用节能技术和设备,能源梯级综合利用技术等。

可再生能源和新能源技术。重点研究低成本规模化可再生能源开发利用技术,开发大型风力发电设备,高性价比太阳光伏电池及利用技术、太阳能发电技术和太阳能建筑一体化技术,燃料电池技术,水电、生物质能、氢能、地热能、海洋能和沼气等的开发利用技术。

煤的清洁高效开发利用技术。重点研究开发煤炭高效开技术及配套设备、重型燃气轮机、整体煤气化联合循环、高参数超(超)临界机组、超临界大型循环流化床等高效发电技术与装备,开发和应用液化及多联产技术,开发煤液化以及煤气化、煤化工等转化技术、以煤气化为基础的多联产系统技术等。

油气和煤层气勘探和清洁高效开发利用技术。重点开发复杂断块与岩性地层以及深海油气藏勘探技术,深层油气勘探技术,稠油油藏和低品位油气提高收率综合技术,油气和煤层气清洁高效开发利用技术。

先进核能技术。研究并掌握快堆设计及核心技术,相关核燃料和结构材料技术,突破钠循环等关键技术,积极参与国际热核聚变实验反应堆的建设与研究。

二氧化碳捕集、利用与封存技术。研发二氧化碳捕集、利用与封存关键技术和措施;制订二氧化碳捕集、利用与封存技术路线图,开展二氧化碳捕集、利用与封存能力建设、工程技术示范。

生物固碳技术和固碳工程技术。研究林业等生物固碳技术和各类固碳工程技术。

农业和土地利用方式控制温室气体排放技术。研究通过调控农业生产方式减少温室气体排放的技术;研究土地利用方式改变减少温室气体排放的技术。

(三)适应气候变化的技术和措施

气候变化影响评估模型。在现有气候变化影响评估模型的基础上,根据中国区域影响评估的特点和需求,开发具有自主知识产权的影响评估工具和综合评估模型。

气候变化对中国主要脆弱领域的影响及适应技术和措施。研究气候变化对中国农牧业、水、海岸带、森林、草原、湿地和其他自然生态系统以及人类健康和公共卫生、特有生态系统和濒危物种等方面的影响,开发相应的适应技术并提出应对措施。

极端天气/气候与灾害的影响及适应技术和措施。研究极端天气/气候与灾害对人类社会和生态系统的影响、减灾的技术措施,建立相应的预测预警和适应技术、对策与响应机制。

气候变化影响的敏感脆弱区及风险管理体系的建立。通过影响评估划分中国气候变化的敏感区和脆弱区,评估气候变化对各类敏感脆弱区影响的风险水平,研究建立中国气候变化影响的风险管理体系。

气候变化对重大工程的影响及应对措施。评估气候变化对中国重大工程建设和运行的影响及相互作用,提出应对措施。

气候变化与其他全球环境问题的交互作用及应对措施。研究气候变化与生物多样性、荒漠化、环境污染等其他全球环境问题的交互作用、响应机制及其适应技术和措施。

气候变化影响的危险水平及适应能力。研究气候变化影响的危险水平,科学地评估不同部门和地区的适应气候变化危险水平的能力。

适应气候变化案例研究。选择典型部门/区域进行适应气候变化案例研究,提出具可操作性的适应政策和措施,分析适应措施的成本有效性。

(四)应对气候变化的重大战略与政策

应对气候变化与中国能源安全战略。分析中国中长期能源需求趋势,研究控制温室气体排放与中国能源供给和需求的关系,科学评估能源供给多元化和节能减排政策的经济技术潜力。

未来气候变化国际制度。研究不同时期国际气候变化制度的发展态势,分析其各种可能方案对中国的潜在影响,研究提出中国自己的未来气候变化国际制度方案。

中国未来能源发展与温室气体排放情景。研究中国未来能源需求情景和温室气体排放情景,研究全球温室气体排放、稳定温室气体浓度水平和气候变化的关系,研究中国各行业、各地方节能减排潜力及其宏观经济成本。

清洁发展机制与碳交易制度。研究气候变化国际制度对全球碳市场的影响,研究与清洁发展机制相适应的国内政策与机制,研究以清洁发展机制为核心的中国碳交易制度的发展方向及其内容。

应对气候变化与低碳经济发展。研究发达国家发展低碳经济的政策和制度体系,分析中国低碳经济发展的可能途径与潜力,研究促进中国低碳经济发展的体制、机制和管理模式。

国际产品贸易与温室气体排放。研究隐含能源进出口与温室气体排放的关系,综合评价全球应对气候变化行动对制造业国际转移和分工的影响。

应对气候变化的科学技术战略。研究气候变化科技发展态势,建立自主创新、引进吸收与知识产权保护相互关系的新机制,形成中国自主创新与国际合作相结合的气候变化科技发展战略。

理论生态学的理论生态学成就

气候变化统计学解释是指涉及气候要素(如温度、降水、风等)的平均状态和离散程度随时间的变化。

1、气候变化的统计学解释关注的是气候要素的平均状态随时间的变化。这可以通过对长时间序列的气候数据进行时间序列分析来实现。例如,可以通过对全球气温数据的时间序列进行分析,来检测全球气温的长期上升趋势。这种上升趋势可能是由于人类活动导致的温室气体排放增加引起的。

2、气候变化的统计学解释还关注气候要素的离散程度随时间的变化。这可以通过对气候数据的方差、标准差等统计指标进行分析来实现。例如,如果发现一个地区的气候要素的方差在过去的几十年中有所增加,这可能意味着该地区的气候变化变得更加不稳定,极端气候的发生概率也可能增加。

3、统计学在气候变化研究中发挥了重要作用,提供了描述气候变化特征、确定气候变化原因和预测未来气候变化的工具和方法。通过应用统计学方法,我们可以更好地理解和应对气候变化带来的挑战。

气候变暖的原因:

1、自然因素方面,太阳辐射、火山活动、地球轨道变化等都会对气候产生影响。例如,火山爆发会将大量气体和火山灰释放到大气中,影响太阳辐射的传输,导致地表温度下降。然而,这些自然因素对气候变暖的影响较小,不是主要原因。

2、人为因素方面,大气中温室气体的增加是导致气候变暖的主要原因。温室气体主要包括二氧化碳、甲烷、氧化亚氮等,它们能够吸收并重新发射红外辐射,导致地球表面温度升高。此外,人类活动还会产生大量废气和污染物,如煤、石油、天然气的燃烧,导致二氧化碳等温室气体排放量增加。

3、森林砍伐等人类活动也会对气候产生影响。森林能够吸收并储存二氧化碳,减少大气中的温室气体含量。然而,人类大规模的森林砍伐和土地利用变化导致森林面积减少,进而导致二氧化碳等温室气体的排放量增加。

细说气候是怎么变化的?

1、提出气候变化对自然界种群、群落及生态系统影响的理论模型

由于人类活动引起的全球和地区变化将导致生物栖息地的改变,栖息范围及生物数量的波动。需要提出一个能预测这种生物变化的理论模型。其只对重要的有代表性环境变化的群落建模,通过这些摸型的行为来预测其它与此相似的生态变化。一类模型将着重于与气候有关的环境变量的时间有效性,这些变量对种群、群落动态的影响及生命历史特征的演化来建模。另一类模型则侧重于空间异质性及特定栖息地的种群统计学变化。最后将利用野外实验数据对模型进行检验。

2、功能性群落单元演化的理论及验证

构造可以揭示立体结构的种群及其物种间及物种中基因型间复杂相互作用的理论。研究的两个焦点是:(1)全球物种的多样性——种群的结构及复杂的相互作用所产生的综合效应,可以大大增加全球范围内共存物种的数量的了解;(2)功能性群落单元——复杂的相互作用可以增加亚群体中小区域的变异性,这可以作为在小区域水平上自然选择的原材料。 种群动态的研究,是经典生态学研究的核心问题之一,至今仍然是生态学中的重要议题。经典生态学研究的种群动态往往是在同质空间里研究,因而种群的平均密度就代表了这一区域的种群大小。然而自70年代以来,由于人为活动的干扰和栖息地的破碎化,种群在空间的动态越来越受到关注。

1、力图建立结构化种群动态模式

多少年来,Lotka-Volterra方程一直作为生态建模的基本摸型。基于它建立的方程和模型,产生了诸多如竞争排斥原理,以致最近有关食物网动态的概念等。但是,正如研究者早已认识了的,这些模型是对生态学上真实情况的一种简化表述。尤其是这些模型忽略了建模种群的内部结构(如:空间结构、年龄结构、生理结构、基因或表现型结构和/或可能的其它结构)。目前的研究正促进对结构化的单种群和多种群系统的理解。尤其要考查种群内部的两种结构。首先,要考查相互作用的年龄或生理结构种群的动态。其次,还要考查相互作用的空间结构种群的动态。

2、海洋种群理论

提出由:①分布于非均质空间、在海洋深处栖息的固着性成体及②周围水体的幼虫两部分构成的种群数学模型。这些模型探讨海洋生命历史的演化及海洋物种地区性共存的条件。

经典种群动态理论定种群中新个体的出现是由于该种群中个体的繁殖。而这个设对许多海洋有机体却不适用,因为在海洋中蚜虫可以从远距离水域飘移过来。这些有机体包括许多在生态(及经济)上最重要的物种。目前正力图提供三个有关种群增长的模型并进行分析。这三个模型分别为:依赖密度的统计模型;不依赖密度的统计摸型;介于二者之间的统计模型。每个模型表达种群增长问题的不同侧面,但它们又通过对增长的描述而联系在一起。

3、Meta-种群(Metapopulation)动态——集合种群

Metapopulation是当今国际数学生态学、理论生态学和保护生物学的一个主要研究前沿,其研究为濒危物种及种群的研究提供了新颖的理论依据,也为全球范围内的环境恶化和生境破坏对物种造成的伤害做出预测和度量,并与空间技术(3S,包括GIS、GPS和RS)相结合,为景观生态学提供深层次的生态与模型机理。它的兴起与蓬勃发展已使一个全新而又重要的生态学分支——空间生态学,突显出来,成为当今国际生态学的热点与前沿。

Meta-种群

一个大的兴旺的种群因环境污染、栖息地破坏或其他干扰而破碎成许多孤立的小种群,各局域(生境缀块)种群通过一定程度的个体迁移而使之成为一个整体,这些小种群的联合体或总体就称为Meta种群。关于 Metapopulation的中文翻译,却存在诸多争论,如复合种群,集合种群,联种群等。现在应用较多的是复合种群。Harrison 和 Taylor (19)将复合种群分为五种类型:

A、经典型或Levins复合种群(classic or Levins metapopulations):由许多大小和生态特征相似的生境缀块(patch)组成,这类复合种群的主要特点是,每个亚种群具有同样的绝灭概率,而整个系统的稳定必须来自缀块间的生物个体或繁殖体交流,并且随生境缀块的数量变大而增加。这种类型比较少见。

B、大陆-岛屿型复合种群(mainland-island metapopulations)或核星-卫星复合种群(core-satellite metapopulations):由少数很大的和许多很小的生境缀块所组成,大缀块起到“大陆库”的作用,因此基本上不经历局部灭绝现象。

C、缀块性种群(patchy populations):由许多相互之间有频繁个体或繁殖体交流的生境缀块组成的种群系统,一般没有局部种群绝灭现象存在。

D、非平衡态复合种群(nonequilibrium metapopulations):在生境的空间结构上可能与经典型或缀块性复合种群相似,但由于再定居过程不明显或全然没有,从而使系统处于不稳定状态。

E、中间型(intermediate type)或混合型(mixed type)复合种群:以上四种类型在不同空间尺度上的组合。例如,一个复合种群由核心区(即中心部分相互密切耦连的缀块复合体)和若干边远小缀块组成,而核心区又可视为一个“大陆”或“核星”种群。

集合种群的研究主要集中在动态、空间结构与模式形成等方面。在Meta-种群动态的研究中,数学模型一直起着主导作用。目前已经发展了4种Meta-种群的灭绝风险模型:

A、经典Meta种群模型(Levins,1969年提出,又叫斑块占据模型):在这个模型中设一定区域内包含许多相似的生境斑块,占据这些斑块的种群大小要么为0,要么为K(小斑块的承载容量),不考虑种群内部的动态,并且忽略各斑块的空间格局,每个斑块上种群的灭绝和定居是随机的。

B、大陆—岛屿meta种群模型:大陆—岛屿模型中存在一个或多个大陆种群,以及许多小的岛屿种群。岛屿种群由于种群较小,经常发生局部灭绝。而大陆种群则相对稳定,并且不断为小的岛屿种群提供迁移者。局部灭绝只影响局部岛屿种群、但对大种群没有影响。

C、斑块种群模型:这个模型中许多局部种群分布在块状并且(或)时空可变的生境上,斑块之间存在很强的扩散,将各斑块连成一个整体,因此局部小种群灭绝的可能性很小。在这个模型中,局部种群之间连接的类型和程度是关键因素。

D、不平衡meta—种群模型:分布在一定区域内的局部种群之间没有扩散或只有很小的、不足以与局部灭绝抗衡的扩散,因此局部的灭绝组成了整个meta种群灭绝的一部分,最后整个meta种群将灭绝。这种meta种群结构主要是由于再定居的频率很低造成的,而这往往又是长期片断化引起的,生境片断化增加种群问的间隔距离,这样由于没有个体迁入。局部种群很容易灭绝。许多局限于隔离小生境上的稀有物种,由于隔离生境间的距离很远,几乎没有再定居的发生,也是居于这种meta种群结构。

以上4种meta种群结构之间的区别,主要在于生境斑块面积的变化幅度和物种扩散能力两个方面。目前的研究应当是建立不同meta种群结构的划分标准,以为更好地了解种群实际存在的格局,进而为制定合理保护方案提供科学依据,从而避免保护中的盲目性。

在理论研究方面应进一步指出的是:斑块的异质化以及质量的变动都对meta种群动态和续存造成影响。meta种群的遗传学以及适应性进化方面的理论研究也有待开展和深入。另外meta种群理论和景观生态学、保护生物学的综合运用,对野生濒危物种的保护与管理措施的改善和修正也是一项新兴的交叉科学。

4、源-汇理论(Source-sink theory)

源-汇理论强调了种群结构和分布之间的联系。某些小生境是个体的净输出者,这就是源。而另外一些则是个体的净输入者,这就是汇。源-汇理论被广泛用于生态毒理学模型,农业生态系统结构模型,以及基于遗传的种群结构评估模型。

Meta-种群动态和源-汇理论之间的联系是十分明显的,它们之间的结合可能会对未来种群生态学和种群遗传学的发展带来光辉的前景。

5、种群对时空变化的响应

已知很多物种已经建立特别的进化机制或者取某种生态策略以适应在其或者环境中的时、空变异。例如很多两栖类动物建立了多阶段的生活周期,以便能在陆地和水域里生存。Rezinick等以虹鳉(Guppy)为对象连续13年在特立尼达田间通过增加捕食者改变虹鳉的死亡率,然后再在实验室里在恒定条件下饲养两代进行比较,发现死亡率的增加会使虹鳉的成熟期提前,体形变小,生殖率增加,后代体形变小。Stephen在他的实验室里,以果蝇为对象,比较两种处理,得到结果表明提高成虫期的死亡率,会使雌虫提前9~12h发育,体重降低,而使前期生殖率增高,而后期生殖率降低,这些实验结果是和生活史对策中的繁殖力模型(Reproduction effect model)预测的结果完全一致。

生活史理论中的模型可能是生态学中最成功的模型。这正如Stephen所指出:“伟大的理论做出惊人的预测”,“生活史理论正帮助进化论成为像物理学一样建立在理论基础上的智能学科”。 (Laudscape/scaling dynamics)

1、在地区性及局部尺度下生态系统对气候变化的响应

气候是影响陆地生态系统结构功能及生产力变化的主要驱动力。预测全球气候变化及CO2升高对生态系统过程的影响是生态学家必须解决的问题。这便需要搞清在各种不同尺度范围内大气层与生态过程的相互作用。通过分层次建模途径来解决问题。力求保证在不同空间和时间尺度范围内预测的一致性,而这种一致性将极大地改善对全球尺度范围内气候变化的生态估价。

2 、对景观干扰及气候变化影响的模拟

自然的干扰将周期性改变许多生态系统的景观结构,但对全球气候变化将如何通过干扰区域的改变来影响景观结构还了解甚少。必须加深对大气层变化与能缓冲干扰的生态系统中景观结构变化之间相互关系的理解。这涉及到三个特定的理论问题:

(1)在广泛的干扰下对空间异质的影响是什么?

(2)对于各种干扰类型,景观结构预期的时间性变化是什么?这些变化将受到气候变化怎样的影响?

(3)空间和时间尺度的选取对景观结构稳定性的监测具有怎样的影响?

3、 景观生态学中的系统过程

生态过程(例如:干扰/恢复领域性及竞争)与非生物空间因素(例如:地形及土壤)相互作用产生空间复杂的景观生物格局。这些格局通过确定适宜的栖息地及限定了生物区系的范围。而生物的相互作用反过来又通过消耗及改变恢复速率使这些格局发生变化。这些格局和过程的相互作用(过程产生格局,格局作用于过程,二者的关系又依赖于尺度)形成了一个有关普通生态学及特定的景观生态学的基本的课题。

目前开发了在各种空间和时间尺度上将格局和过程一体化的理论途径。一整套模型及景观分辨尺度将用于研究生态系统格局的变化对其生态学功能的影响。 生活史理论通常讨论的是有机体如何面对生殖和死亡的时间表,做出决策以便在这两者之间实行交换,从而寻求“适合度”最大。但是在行为生态学中很多重要的行为决策,例如取食,躲避捕食者,领域防卫,迁移,社会行为等,都不适合于经典的生活史理论的框架,然而这些行为又都影响他们的存活与繁殖,因此又似乎类似于传统的生活史理论。这两个分支学科都是研究有机体对环境的适应,而又在很大的程度上依赖于数学模型。但是它们应用不同类型的模型,而且用不同的“适合度”的定义。自九十年代以来,一种新的方法,主要是基于动态的状态模型越来越多地用于研究行为的适应性。事实上,这种新的方法,正在统一生活史理论和行为生态学。这种动态模型既能产生一般的原理又能得出关于某些行为或者生活史现象的可验证的、定量的或定性的预测。C.W.Clark应用别尔曼提出的动态规划方法,研究存在被捕食危险的取食行为,把种群的生长和繁殖结和到模型中去,显示了这种新方法的优越性。

行为生态学模型之所以受到越来越多关注的另一个原因是,最近十年来生物多样性的保护受到人们的普遍重视。正如Tim Caro所指出“个体行为的知识潜在地改变人们对该种群在破碎化生境中的命运以及种群对捕猎和其他干扰反应的认识,改变人们对物种再引入,种群监测以及建模的认识,个体行为的研究甚至帮助我们了解人类将怎样取保护对策”。在经典的有关海洋渔业捕捞的生态经济模型中,把个体看成是相同的,但是实际上个体对种群的潜在生产力是大不相同的。例如对一雄多配的哺乳动物,过多的雄性往往不利于种群的繁殖。而在单配种中雄性往往帮助抚育后代,雄性的被捕获,即降低了种群的内禀增长率。此外对某一性别的过度捕杀,例如对非洲雄象的捕杀,导致雌象很难找到配偶。这种“阿利效应”在种群模型中受到特别重要的关注。 最近,三方面的进展深深影响着生态学中的建模:第一,“混沌理论”告诉人们非线性系统的短期预测将是困难的,而长期预测是不可能的;第二,生态学家开始认识到在生态系统中个体之间的局部相互作用是很重要的;第三,计算机的能力和其软件的进展,使得计算机成为生态建模最主要的工具。这三者的结合可能会对生态学理论产生深远的影响。

理论生态学家长期以来试图在生态学中寻找类似于物理学中牛顿定律那样的基本定律,然而“混沌现象”告诉人们系统初始值的微小差异,会导致系统路径的千差万别,这意味着系统的历史对它的未来有决定性的作用,因此系统的某一特别行为的原因,很可能出自历史的偶然,因此要知道一个动态系统将如何运动,只有精确地模拟它,这也就是基于个体的模拟可能是仅有的发现这类动态系统本质的方法。生态学转向基于个体的模型表明,生态学家已经认识到模型既要包括生物学的本质,又要认识和接受生态系统非线性的特性。

在生态学中基于个体的模型可以被看作是还原论方法的应用,系统的特性可以从组成系统的各成分的特性以及它们的相互关系中得到。在科学的发展历史中,还原论方法已广泛被证明是非常有用的,那么它们有理由相信在生态学中也应如此。实际上最近在进化生态学和行为生态学中的进展已证明了这一点。 湿地生态过程是指湿地发生与演化过程,湿地的物理、化学和生物过程。

湿地发生与演化过程研究包括从主导环境因素和主导过程入手研究湿地的发生条件,以系统动力学的理论与方法研究湿地演化的驱动因素和演变过程。通过稳定的湿地沉积物,特别是泥炭层的生物组合及地球化学特征恢复湿地及其周围环境的古生态演化。以遥感和地理信息系统手段研究湿地对于全球气候变化的响应。

物理过程研究包括湿地水分或水流的运行机制;湿地植被影响的沉积过程与沉积通量;湿地开发前后局地与区域热量平衡等。

化学过程包括氮、磷等营养元素在湿地系统中的流动与转化;湿地温室气体循环机制及其对全球变化的贡献的定量估算;湿地对重金属和其他有机无机污染物的吸收、鳌合、转化和富集作用等。

生物过程包括湿地的净第一性生产力;湿地生物物种的生态适应;湿地有机质积累和分解速率;湿地生态系统的营养结构、物流和能量流动等。 1、 关于生物多样性

根据联和国环境与发展大会报告,生物多样性可在3个概念层次进行讨论:生态系统多样性、物种多样性和遗传多样性。我国的一些专家将生物多样性划分为4个层次进行讨论:景观多样性、生态系统多样性、物种多样性和遗传多样性。生物多样性指数有两个组成部分即:绝对密度(丰富性)和相对丰度(均一性)。也就是说,多样性指数是丰富性和均一性的统一。在物种多样性动态模拟过程中,物种多样性包括物种生物量多样性和物种个体数量多样性。生物量多样性与景观多样性有较密切的联系,而物种个体数量多样性与基因多样性有较密切的关系。

2、多样性与稳定性关系——质疑生物多样性导致生态系统稳定性的传统观点

在生态学中多样性和稳定性的讨论几乎经历了半个世纪。这不仅因为它有重要的理论意义,而且还在于它涉及到管理,害虫防治,生物多样性保护等重大实际应用。今天在研究系统复杂性的时候,关于这个问题的讨论更显得重要。

本世纪70年代以前,生态学家企图发展一种联系稳定性和多样性的通用理论。例如,Odum的研究表明,通过食物网能量路径的数量是群落稳定性的度量。MacArthur认为,随着食物网中链环数量的增加,稳定性提高。Elton指出,如果生态系统变得比较简单,那么它们的稳定性就会变差。Hutchinson断言,多样性所提供的稳定性对所有适应性最强的大动物都是很有价值的。

自从Gardoer和Ashby及May向稳定性随物种多样性增加而提高的普遍看法提出挑战以来,一些科学家的想法逐渐开始转变。例如,Gilpin争辩说,他的研究结果不支持自然历史学家们多样性产生稳定性的普遍看法。Woodward认为,较高的物种多样性并不总是意味着较稳定的生态系统功能。McNaughton认为没有证据可以证明,较大的多样性由较高的稳定性来伴随。Beeby和Brenoan认为,高度多样化的群落似乎更脆弱。

然而,许多科学家仍一直认为,多样性产生稳定性。例如,Odum提出,较大的多样性意味着较长的食物链、更多的共生和对副反馈控制的更大可能性,这就减少了波动,并因此提高了稳定性。Watt的环境科学原则之一为:按照自然法规稳定的环境允许生物多样性的积累,进而增进种群的稳定性。McNaughton的研究表明,越多样的植物群落很可能更稳定。Glowka等的研究结果表明,物种多样性和生态系统稳定性有正相关关系。Tilman等根据他们在147个草地实验区的重复试验断言,生物多样性对生态系统稳定性有积极影响。

在景观单元多样性层次,许多生态学家认为多样性有利于区域生态环境安全。例如,在1969年,美国生态学家Odum提出了生态系统的发展战略,强调生态演替和人与自然的矛盾,即最大保护与最大产量的矛盾。战略的总体思想是:在有效能量投入和主要生存物理条件(如:土壤、水、气等)的约束范围内,使生态系统达到尽可能大和多样的有机结构。最舒适和最安全的景观是一个包含各种作物、树林、湖泊、河流、四旁、海滨和废弃用地的各种不同生态年龄群落的混合。德国生态学家Haber将这个生态系统发展战略运用于土地利用系统,并在11年提出了分异土地利用的概念。经过多年的研究和实践,Haber于19年提出了适用于高密度人口地区的分异土地利用DLU(Differentiated Land Use)战略:(1)在一个给定的自然区域中,占优势的土地类型不能成为唯一的土地类型,应至少有10%到15%土地为其它土地利用类型;(2)对集约利用的农业或城市与工业用地,至少10%的土地表面必须被保留为诸如草地和树林的自然景观单元类型,这个“10%急需规划”是一个允许足够(虽然不是最佳)数量野生动植物与人类共存的一般原则;这10%的自然单元应或多或少的均匀分布在区域中,而不是集中在一个角落;(3)应避免大片均一的土地利用,在人口密集地区,单一的土地利用类型不能超过8~10hm。

生物多样性与稳定性关系的讨论应建立在完全一致的稳定性概念基础之上。根据Grimm和Wissel的研究成果,在有关文献中可以发现70个不同的稳定性概念和163种定义。相关的其它名词还有永久性(Constancy),回弹性(Resilience),持久性(Persistence),阻抗(Resistence),弹性(Elasticity)和吸引域(Domain of attraction)等。虽然所有这些有关稳定性的概念和定义的基本点可归纳为系统受干扰时抵抗偏离初时态的能力和系统受扰动之后返回初始态的能力,但它们在出发点和一些细节上有相当大的差异。这些差异是引起多样性和稳定性关系争论的根源之一。

3、多样性与生产力关系——质疑生物多样性有利于土地生产力的提高

根据Darwin的结论,群落的生物多样性是由共生物种的生态位多样化产生的,由于更有效的利用,这种多样化将导致更高的群落生产力。经济合作与发展组织(OECD)也认为,农业在基因层次以生物多样性作为基因库来提高作物和牲畜的生产力。景观单元多样性的减少,会使病虫害增加,因此,导致了大量农药的使用,这样,农田和农田以外的生物多样性遭到农药的破坏,并往往会形成恶性循环。Tilman等在美国147个试验点的结果也支持Darwin的观点。即他们认为生物多样性对生态系统生产力和稳定性有积极影响。

近年来,一些西方国家提倡诸如农林系统的多样化种植系统。它基于4方面的原因:(1)较高景观单元多样性对光、水、营养等有较好的捕获能力;(2)可避免病虫害不断发生的恶性循环;(3)在多样化的种植系统中,一种作物的欠收不会对农民带来太大的影响;(4)农民不会对个别农产品价格的大幅涨落反应过于敏感。因此,多样化种植可保证农民收入的稳定性。然而,许多实验表明,由于养分增加而引起的生产力提高,几乎总是物种的数量减少。沿植物生产力自然梯度带的调查也显示了类似的结论。McNanghton在美国4个实验区的研究结果也表明,物种的丰富性与草地的生产力有明显的负相关关系。Lawtow和Brown在分析了有关历史研究成果后认为,物种丰富性不是生产力的主要决定因素。也就是说,在生物多样性与生产力的关系方面,也存在着不同的观点。

生物多样性实验的“隐藏处理(Hidden treatment)”是生物多样性与生产力关系争论的根源之一。换句话说,影响生物多样性及其功能的因素往往很多,但在许多生物多样性实验中,只观测部分因素或一种因素,因此,在解释实验结果时,一些影响实验反应的因素很可能就被忽略掉了。这种“隐藏处理”包括3种类型:(1)有意或无意地改变了生物或非生物条件,(2)非随机地选择了物种或景观单元,(3)在随机选择的物种或景观单元组群中,增大了起主导作用的物种或景观单元的统计概率。

4、生物多样性与景观连通性——质疑景观连通性与生物多样性有正相关关系

本世纪90年代中期以来,一些景观生态学家认为,景观连通性与生物多样性有正相关关系,但目前为数不多的研究还不能肯定这一结论的正确性。

自本世纪60年代初以来,连通性已作为一种数学工具被运用于许多研究领域,并解决了一系列有关问题。本世纪80年代初,连通性术语首次被运用于景观生态学研究。19年以前,景观连通性研究仅限于其定义的讨论。

连通性包括点连通性、线连通性、网连通性和景观连通性。点连通性,线连通性和网连通性模型的研究已经历了较长的时间,它们在理论上已比较成熟。但景观连通性模型的研究才刚刚开始。19年,Mladenoff等提出了一个景观连通性模型。但此模型在许多案例研究中,几乎大多数取值为无穷大。因此,Mladenoff等提出的景观连通性模型被给予了全面的改进。景观连通性被定义为在景观单元中动物迁栖或植物传播运动的平均效率。

在严格数学推理的基础上,构造了一个可用于所有多边形最大半径距离(从中心运动到最远点的距离)的通用数学表达式,并由此推导出了景观连通性模型。按照该景观连通性模型的构造过程,美国景观生态学家Forman的有关研究成果可表述为:景观连通性与生物多样性有正相关关系。19年在欧洲召开的两次国际会议上,一个日本学者和一个欧洲学者也报告了相同的结论。然而,景观连通性和生物多样性关系的研究刚刚起步,它们是否确实正相关,有待于进一步研究。

综合有关研究成果,关于生物多样性需要人们继续深入研究以下4个问题;

(1)是否生物多样性导致生态系统稳定性;

(2)是否生物多样性有利于提高土地生产力;

(3)景观单元多样性模型取何值时为最佳土地利用结构;

(4)生物多样性是否与景观连通性正相关。

在研究这些问题时,应明确所针对的多样性层次、空间尺度和时间尺度。它们的正确研究结论将是土地战略管理的可靠理论基础。 1、遗传漂变说

在竞争领域内,近年来生态学家们的兴趣又重新回到了对竞争排除法则的争论上(王刚、张大勇1996)。这次争论的命题可以很简明地表示为:“完全相同的种能否共存?”Zhang & Jiang (1993, 1995)提出在分析完全相同种的竞争过程与结局时必须考虑种群的遗传结构和进化动态,并且得出了“生态学上完全相同的种能够共存”的结论(又见Zhang & Hanski 1998)。如果这个理论成果能够得到证实,那么整个群落生态学理论都需要重新建立或调整。在此前提下,张大勇、姜新华(19)提出了一个群落结构组建的新说,即关于相似种种间共存机制的“遗传漂变”说。这一学说将从理论上动摇生态学基本原理之一的高斯竞争排除原理。

2、时间生态位分化说

植物群落结构组建和物种多样性维持机制是生态学界的难题之一,张大勇等围绕这一热点问题对青藏高原东部高寒草原群落进行多年的野外观测试验与理论分析,首次得出了植物种间“时间生态位分析是复杂群落结构组建和物种多样性维持的重要机制”的结论。

利用天然γ测井曲线反演古气候变化

气候变化,是指气候平均状态统计学意义上的巨大改变或者持续较长一段时间(典型的为10年或更长)的气候变动。

那么具体而言,什么是气候变化?

气候变化是指气候平均值和离差值2者中的1个或2者同时随时间出现了统计意义上的显著变化。平均值的升降,表明气候平均状态的变化;离差值增大,表明气候状态不稳定性增加,气候异常愈明显。《联合国气候变化框架公约》第一款中,将“气候变化”定义为:“经过相当一段时间的观察,在自然气候变化之外,由人类活动直接或间接地改变全球大气组成所导致的气候改变。”UNFCCC因此将因人类活动而改变大气组成的“气候变化”与归因于自然原因的“气候变率”区分开来。

造成气候变化的原因是什么?气候变化的原因可能是自然的内部进程,或是外部强迫,或者是人为地持续对大气组成成分和土地利用的改变。既有自然因素,也有人为因素。

在人为因素中,主要是由于工业革命以来人类活动(特别是发达国家工业化过程的经济活动)引起的。化石燃料燃烧和毁林、土地利用变化等人类活动所排放温室气体,导致大气温室气体浓度大幅增加,温室效应增强,从而引起全球气候变暖。据美国橡树岭实验室研究报告,自1750年以来,全球累计排放了1万多亿吨二氧化碳,其中发达国家排放约占80%。

国际应对气候变化有哪些主张呢?尽管还存在一点不确定因素,但大多数科学家仍认为及时取预防措施是必需的。全球气候变化问题引起了国际社会的普遍关注。针对气候变化的国际响应,是随着联合国气候变化框架条约的发展而逐渐成型的。19年第一次世界气候大会呼吁保护气候;1992年通过的《联合国气候变化框架公约》确立了发达国家与发展中国家“共同但有区别的责任”原则,阐明了其行动框架,力求把温室气体的大气浓度稳定在某一水平,从而防止人类活动对气候系统产生“负面影响”;19年通过的《京都议定书》(以下简称《议定书》)确定了发达国家2008~2012年的量化减排指标;2007年12月达成的巴厘路线图,确定就加强UNFCCC和《议定书》的实施分头展开谈判,并于2009年12月在哥本哈根举行缔约方会议。

到目前为止,UNFCCC已经收到来自185个国家的批准、接受、支持或添改文件,并成功地举行了6次有各缔约国参加的缔约方大会。尽管目前各缔约方还没有就气候变化问题综合治理所取的措施达成共识,但全球气候变化会给人带来难以估量的损失,气候变化会使人类付出巨额代价的观念已为世界所广泛接受,并成为广泛关注和研究的全球性环境问题。

我国气候变化史

13年,竺可桢提出了中国历史时期气候周期性波动变化的基本状况。他认为近2000年中,汉代是温暖时期,三国开始后不久,气候变冷,并一直推迟到唐代开始。唐末以后,气候再次变冷,至15世纪渐入小冰期,呈2峰3谷结构,直至20世纪初气候回暖,小冰期结束。汉代、唐代是年均温高于现代约2℃的温暖时期。该研究成果已为气候学界和历史地理学界广泛用。但近些年来,由于新资料的发现和研究方法的改进,许多学者对竺可桢的工作作了补充。其中朱士光等认为2000~3000年以来,中国历史时期气候变化经历了以下几个阶段:

(1)西周冷干气候(公元前11世纪至公元前8世纪中期);(2)春秋至西汉前期暖湿气候(公元前8世纪中期至公元前1世纪);(3)西汉后期至北朝凉干气候(公元前1世纪中期至6世纪);(4)隋和唐前、中期暖湿气候(7~8世纪);(5)唐后期至北宋时期凉干气候(9~11世纪);(6)金前期湿干气候(12世纪);(7)金后期和元代凉干气候(13和14世纪前半叶);(8)明清时期冷干气候(14世纪后半叶至20世纪初)。

后来许多地理学家对我国的气候变化作了进一步修改,但总的趋势大致如此。

历史时期的气候不仅在气温上有周期性波动,引起冷暖的变化,而且在湿度方面也存在一定的变化。总的说来,暖期与湿期、冷期与干期是相互对应的,但每个冷暖期内部又有干湿波动,不可一概而论。朱士光等研究认为,气温的变化要快于降水量的变化,而降水量的变化幅度又大于气温变化的幅度。在历史时期,气候冷暖波动与干湿波动有明显的相关性,但不完全同步。

21世纪的气候变化——令人担忧的同时也要反思

古文明的没落给我们警示

孤耸于太平洋的复活节岛是地球上最偏远的地区之一。拉诺·洛拉科火山口那亘古沉默的巨石人像是古文明留给我们的唯一见证。在人类对环境的过度开发中,古文明消失了。而在部落之间无休止的争斗中,掠夺性的砍伐使大片的森林迅速地从地球上消失殆尽,水土不断流失、鸟类濒临毁灭,维系人类生存的粮食及农业系统屡遭破坏。灾难迫在眉睫,警钟已鸣,但为时已晚,崩溃性的危机在所难免。

复活节岛的故事令人惊惶,它警示我们,不善待生态将会给地球带来怎样的恶果。21世纪气候的变化正是这一故事在全球的延伸,差别在于:在复活节岛,击垮人们的是无法预测和难以控制的危机,而在当今,无知绝不是我们开脱的理由。我们有证据也有能力避免危机,我们知道一切照旧将会带来怎样的后果。

1963年,也就是古巴导弹危机后最严峻的冷战期间,约翰·肯尼迪总统曾经指出:“在这个星球上,人类是不可分割的,具有共同的脆弱性,这是我们这个时代不容争辩的事实。”当时,笼罩全世界的是核的魔影,40年过后,笼罩着我们的则是气候变化危机,这已是不争的事实。

气候变化使人类面临着双重灾难的威胁。①气候变化直接威胁人类发展。世界各国人民都受气候变化的影响,但那些最贫困的人们将首当其冲,受到最直接的危害,的匮乏往往使他们束手无策。这一灾难离我们并不遥远。如今,这一灾难已显山露水,它减缓了我们实现千年发展目标的进程,加剧了各国内部以及各国之间的不平等。如果对此置之不理,人类发展将在21世纪跌入倒退的深渊。②气候变化将给未来带来灾难。同冷战期间的核对峙一样,气候变化不仅威胁贫困的人们,也威胁着整个星球,威胁着我们的后代。目前我们所走的是一条不归路,必将导致生态灾难。全球变暖的速度,变暖的准确时间,以及产生怎样的影响目前还不得而知,但是,地球巨大冰盖的瓦解正在加速,海洋正在变暖,雨林系统正在崩溃,其他一些后果业已成为现实。这些危险有可能引发一连串的后果,彻底改变我们星球的人文和自然地理状况。

我们这一代有能力也有责任改变这种后果。直接危险正在向世界上最贫困的国家及其最弱势群体严重倾斜。然而,没有永远风平浪静的港湾。富裕国家及其人民尽管没有直接面对日渐逼近的灾难,但最终也难以避免这些灾难的影响。因此,预先取措施缓和气候变化,将是全人类(包括发达国家后代)避免未来灾难的基本保障。

气候变化的核心问题,是地球吸收二氧化碳和其他温室气体的能力正在受到严重影响。人类生活已超出了环境的恢复能力,在生态方面,人类已经欠下了后代无力偿还的巨债。

气候变化促使人们以一种全新的视角思考人类的相互依存性。不管何种原因将我们分开,人类共享地球,就同复活节岛的岛民一同分享他们的岛屿一样。连接人类社会的纽带没有国界之分,也不受代与代之间的限制。任何国家,不论大小,都不能无视他人的命运,将今日的行为给未来人造成的后果抛诸脑后。

我们的后代将以我们面对气候变化做出的反应来衡量我们的道德价值。这种反应将成为当今政治***如何取行动信守诺言、消除贫困并建设更包容世界的证据。如果我们的行为使大部分人类更加边缘化,那么就是对国家之间社会公平与公正的蔑视。气候变化还向我们提出一个尖锐的问题——如何看待我们与后代之间的关系?行动是张晴雨表,反映了我们对跨代社会公平与公正的承诺,是后代对我们的行为做出评断的依据。

有些迹象令人鼓舞。几年前,气候变化怀疑论大行其道。气候怀疑论者得到了大型公司的慷慨赞助,他们的理论受到媒体大肆宣扬,某些也对他们言听计从,从而误导了公众的理解。今天,每位诚信的环境科学家都认为气候变化已是一项严重的事实,而且气候变化与二氧化碳排放有关。世界各国也认为如此。科学上达成一致并非意味着对全球气候变暖原因及后果的争论就此结束:气候变化科学所研究的是可能性,而非必然性,但至少如今的政治辩论是以科学为依据的。

然而,科学证据与政治行动之间存在着很大差距。到目前为止,绝大多数都没有达到气候变化减排要求。最近,间气候变化专门委员会公布了第四次评估报告。大多数都对此有所反应,承认气候变化勿庸置疑,需要取紧急行动。八国集团连续召开了会议,重申取具体措施应对气候变化的必要性。它们承认巨轮似乎正朝着冰山航行,这是个不祥的征兆。遗憾的是,它们还没有断然取措施,为温室气体确定一条新的排放路线。

时间所剩无几,这是不争的事实。气候变化这一挑战必须要在21世纪得到解决。目前尚没有什么技术能够立竿见影。虽然时间跨度很长,但这绝不能成为敷衍和犹豫不决的借口。为找到有效的解决方案,各国必须解决全球碳预算中的存量与流量问题。由于排放增加,温室气体存量日益上升。但是,即使我们从明天开始停止排放,温室气体存量的下降速度也十分缓慢。这是因为二氧化碳排放后将长时间停留在大气中,而气候系统的反应却很缓慢。这种系统固有的惰性意味着,要经过很长时间,今天碳减排的效果才能显示出来。

成功减排的机会大门正在关闭。在不造成危险气候变化的前提下,地球吸收二氧化碳的能力是有限的,而我们正在逼近这一限度。我们没有多少时间确保这扇机会之门依然敞开。我们要在这段时间内,向低碳能源系统过渡。这是一个高度不确定的领域。但确定的是,如果仍然像过去一样,那么世界将难逃原本可以避免的“双重灾难”——近期人类发展倒退和后代面临生态灾难的危险。

如同复活节岛遭遇的灾难一样,结果是可以避免的。目前《京都议定书》的承诺期将于2012年结束,借此机会,我们可以制定多边战略,重新界定全球生态依存关系的管理方式。各国在协商议定书时指出,首先应确定21世纪的可持续碳预算,并在承认各国责任“共同但又有差别”的情况下,制定碳预算的实施战略。

要想取得成功,世界上最富裕国家必须发挥带头作用。这些国家的碳足迹是最深的,但同时具备尽快进行大幅度减排的技术和资金能力。但是有效的多边合作框架要求所有排放大国(包括发展中国家)都要积极参与。

气象中的rcp什么意思

许多地质学家根据钻探岩心的沉积物质组分的分析研究反演古气候的冷暖变化。而天然放射性元素容易被粘土物质和有机物质有机碳吸附。在沉积过程中由于粘土泥质颗粒细具有较大的表面积,沉积缓慢,有充裕的时间吸附更多的放射性元素。在地层中泥质碳含量高,表示当时沉积环境的水动力较弱,水体加深,湖(洋)面扩张。反应当时的气候是降水多,气候比较湿润。如果地层中砂质或碳酸盐含量高,表示当时沉积水体浅,沉积物质颗粒粗,降水少,气候干旱,导致水退。如果地层中沉积物质是砂质和泥质交互频繁,表示当时的沉积水体时深时浅,沉积环境不稳定而多变。

铀的化学性质比较活泼,在自然界中铀主要以U4+和U6+存在,U4+只存在于强酸性环境,当酸性减弱时,将生成U(OH)3+和UO2+。U6+易溶解迁移,U4+和U6+之间的转化主要决定于氧化还原电位,在氧化状态下,U4+转化为U6+,易随水流而迁移;在还原条件下,U6+还原为U4+沉淀,使岩层放射性增强。可见U的富集主要是沉积环境中有机质在成岩过程中对铀的还原和吸附作用。有机质是沉积环境中的还原剂和吸附剂。U的放射性γ射线总量与沉积岩中有机质(碳)成正相关关系(图7.3.1)。沉积岩中有机质含量由高变低,说明当时的沉积环境由深水湿润气候逐渐变为浅水干旱气候。因此,铀系的γ射线总量高,表示的是深水沉积,降水量丰富湿润的古气候。铀系的γ射线总量相对较低,指示为浅水沉积的干旱古气候。

图7.3.1 岩石中有机碳含量与铀含量的相关性

柴达木盆地的发育深受青藏高原隆升的影响,第四纪沉积深厚连续,沉积速率大,记录了环境变迁的信息。20世纪80年代以来“全球变化”研究推动了柴达木盆地第四纪古气候变迁研究,先后有多位学者利用油田深钻岩心的物质成分和古地磁测量资料进行古气候研究以及利用石油测井中的天然γ测井资料进行古气候研究获得了有效的成果。

柴达木涩中6井位于涩北构造轴东部近沉积盆地中心。该孔在380~1146 m段连续取心760 m有完整的γ测井曲线(GR)。760 m岩心年代测定从老至新为3.15~1.30 Ma(B.P.)。根据岩心取样,对蒿藜孢粉统计,对碳酸盐含量分析和氧同位素(δ18O)测量进行古气候变化研究(图7.3.2)。三者气候变化曲线波动形式相当一致,780 m 深以下气候变化幅度小而频率高。780 m 以浅变化幅度增大频率降低,即1.7 Ma(B.P.)气候偏湿润,以后趋向变干旱。图中δ18O低值段对应暖期,高值段对应冷期。图7.3.2中涩6井天然γ测井(GR)曲线(每米间距一个数据)是一条反应气候干湿波动的随年代变化的气候曲线,与蒿藜花粉统计值、碳酸盐含量、δ18O三者曲线对应很好。同样可划分为41个气候段,其年代值比较接近,相差最大1~2 ka。高值段(104脉冲/min)对应半深湖相和浅湖相,湖水较深,表明气候湿润。与δ18O低值(暖期)碳酸盐低含量即泥质多以及蒿藜花粉低值(湿润)相对应。GR曲线的低值段(8.5×103脉冲/min)表示湖水浅,为滨湖相、湖面收缩,对应气候干旱。与δ18O高值(冷期)、碳酸盐高含量(即泥质少),蒿藜花粉高值(干旱)相对应。浅滨湖GR值介于其中。相对应的四条气候曲线,对GR来讲,只有个别情况相差,如滨湖沼泽相沉积转为水下河道相沉积粉砂岩层时,应当是湖面扩展,GR应当是高值,但却出现低值,这时必须研究确定气候干湿变化。

由此可见,γ测井(GR)曲线,可作为古气候研究的替代性指标。

有人提出如果利用天然γ能谱测井中铀道数据和钍道/铀道比值数据测井曲线配合总道记录曲线,能更好地反演古环境。

图7.3.2 涩中6井蒿藜花粉碳酸盐δ18O和cGR曲线对比图

大数据怎样帮助我们了解气候变化

气象中的rcp意思是代表性浓缩通道。

扩展知识:

代表性浓缩通道(Representative Concentration Pathway,RCP)是国际气候科学机构全球碳项目(Global Carbon Project)提出的一种用于描述未来全球人为碳排放的量化指标。它基于IPCC发布的第四次评估报告,将未来碳排放分为4种情景:低排放情景(RCP2.6)。

中排放情景(RCP4.5)、高排放情景(RCP6.0)和超级高排放情景(RCP8.5)。这些情景代表了不同的发展路径和政策选择,为气候变化研究提供了重要的参考依据。RCP的主要目的是提供一种标准化的方法,用于比较不同研究中的气候变化预测结果。

它通过设定不同的碳排放路径,模拟了未来全球温室气体排放对气候系统的影响。这些路径与全球平均温度变化密切相关,因此可以用来评估不同减排策略对气候变化的影响。RCP在气候科学领域得到了广泛应用,它不仅可以用于评估未来气候变化的趋势。

还可以用于研究碳排放与气候变化之间的关系。通过比较不同RCP路径下的气候变化结果,科学家们可以研究不同碳排放水平对气候系统的影响,例如海平面上升、极端天气等。此外,RCP还可以用于评估不同国家和地区在未来碳排放趋势中的角色,为国际合作和政策制定提供依据。

需要注意的是,RCP只是一个代表性的碳排放路径,它并不能完全反映所有可能的气候变化情景。在实际情况中,碳排放路径可能受到多种因素的影响,包括经济发展、能源政策、技术进步等。因此,在使用RCP进行气候变化研究时,需要结合具体的情况和数据进行分析和评估。

总之,代表性浓缩通道是一种重要的气候科学指标,它为评估未来全球人为碳排放提供了标准化的方法。通过比较不同RCP路径下的气候变化结果,我们可以更好地理解碳排放与气候变化之间的关系,为制定有效的减排策略提供科学依据。

大数据怎样帮助我们了解气候变化

气候变化确实威胁着我们的星球,全球都应感受到它的毁灭性后果。美国航空航天局(NASA)气候模拟中心(NCCS)高性能计算负责人Daniel Duffy博士,介绍了大数据对气候变化研究工作的至关重要性。

NCCS为大规模的NASA科学项目提供高性能计算、存储和网络。其中许多项目涉及全地球性天气和气候模拟。这些模拟生成的海量数据是科学家永远读取不完的。因此,益发有必要提供分析和观察这些模拟产生的大数据集的方法,更深入了解气候变化等重大科学问题。

大数据和气候变化:它们是怎样运作的?

大数据和气候研究息息相关;没有海量数据就无法进行气候研究。

NCCS拥有名曰“探索号超级计算机”的计算机集群,主要目标是提供必要的高性能计算和存储环境,以满足NASA科学项目的需求。探索号计算机正在开展一系列不同的科学项目,其中的大部分计算和存储被用于天气与气候研究。

探索号计算机是一种高性能计算机,专门为极大规模紧密耦合的应用而设计,是硬软件紧密结合和相互依存的系统。虽然该计算机没有被用于从卫星等遥感平台集数据,但该计算机运行的许多大气、陆地和海洋模拟都需要观测数据的输入。使用探索号计算机的科学家不断收集输入其模型的全球性观测数据。

然而,如果科学无法以有效手段观测和比对数据,即使向它们提供海量数据也毫无意义。NASA全球建模和模拟办公室(GMAO)增强性动画就是这方面的范例,该办公室利用多方来源的观测信息驱动天气预报。

GMAO的GEOS-5数据模拟系统(DAS)将观测信息与建模信息融合,以生成任何时间内都最为精确和质地统一的大气图像。每6小时的累计观测超过500万次,并对气温、水、风、地表压力和臭氧层的变量进行比对。模拟观测分八大类型,每类对不同来源的变量进行测量。

数据处理

气候变化模型需要具有大量存储和数据快速接入且数据不断增加的计算。为满足这一要求,探索号计算机由多个不同类型的处理器组成:79200个英特尔Xeon核心、28800个英特尔Phi核心和103680个NVIDIA图像处理器(GPU)CUDA核心。

探索号计算机的总计算能力为3.36万亿次,或每秒3,694,359,069,327,360次浮点运算。为使大家更好地理解这一规模的计算能力,该计算机可在一秒钟内完成活在世上的每个人以每秒将两个数字相乘的速度连续运算近140个小时的运算量。

除了计算能力外,探索号计算机还具有约33拍字节(petabyte)的磁盘存储空间。典型的家庭硬盘容量为一兆兆(terabyte)字节,因此,该计算机的存储能力相当于33000个这类磁盘。如果用它存储音乐,你可以编排一个长度超过67000年而不重复的演奏清单。

NCCS每年都对探索号计算机进行升级。随着其服务器和存储的老化,在四或五年后替换而不是继续运行部分设备实际上能够提高效率。例如2014年年底至2015年年初利用升级的计算机群取代了探索号计算机2010年升级的设备。在地面空间、功率和冷却包络相同的情况下,升级后的NCCS可将计算能力提高约7倍。退役设备通常会转变用途,用于内部支持和其他业务或大学等外部站点,包括马里兰大学巴尔的摩分校(UMBC)和乔治梅森大学(GMU)。

数据映射:气候变化与预测

NCCS生成的数据推动了不同重要研究和政策文件的起草工作。

这一数据使人们能够就我们星球的气候变化影响进行更知情的对话,并有助于决策机构针对气候预测制定出适用战略与行动。例如,该数据已被用于气候变化专门委员会(IPCC)推出的评估报告。NCCS从事和NASA科学可视化工作室观测的数据模拟,介绍了IPCC第五次评估报告提出的气候模型,对气候和降雨预计在整个21世纪的变化方式做了说明。

于2005年袭击了美国墨西哥湾沿岸的卡特里娜飓风突显了准确预报的重要性。虽然它造成了巨大损失,但要不是预警预报给人们留出了适当准备时间,损失就会严重得多。如今,NCCS的超级计算机主要负责GMAO全球环流建模,其分辨率比卡特里娜飓风时提高了10倍,因而能够更准确地观察飓风内部,并有助于对其强度和规模做出更精确的估计。这意味着气象学家能够更深入地了解飓风的走向及其内部活动,这对于就卡特里娜飓风这类极端天气做出成功规划和准备至关重要。

此外,观测系统模拟试验(OSSE)还利用全球气候模型的输出成果模拟NASA提出的下一代遥感平台,从而向科学家和工程师提供了虚拟地球,以便在制作新的感应器或卫星之前研究大气遥测的新优势。

未来的气候变化数据

数据是NASA的主要产品。卫星、仪表、计算机甚至人员都可能频繁进出NASA,但数据尤其是地球观测数据具有永驻价值。因此,NASA必须不仅让其他NASA的站点和科学家,而且要让全球都用上它生成的数据。

仅时时生成的数据量就构成了一大挑战。在研究系统的科学家都难以使用数据集的今天,NASA以外的人们获得可用数据更是难上加难。因此,我们开始研究创建一项气候分析服务(CAaaS),将高性能计算、数据和应用编程接口(API)相结合,以便为在现场与数据共同运行的分析程序提供接口。换句话说,用户可就他们关心的问题提问,并利用NASA系统的运行进行分析,随后将分析结果返回用户。由于分析结果的规模小于生成它的原始数据,这一系统将减少经不同网络传送的数据量,而更重要的是,API可以大大减少用户和数据间的摩擦。

以上是小编为大家分享的关于大数据怎样帮助我们了解气候变化的相关内容,更多信息可以关注环球青藤分享更多干货