1.中国气候的形成的原因是什么

2.地理上的高低压对气候有什么影响,什么时候会产生?

3.亚洲气候低压和高压中心分别在哪里?尽快在两天内查出来.谢谢!

4.未来气候变化测量的不确定性最关键的是?

5.天气和气候的特点是什么

气候系统的中心是什么_气候系统的要素

今年5月举行的世界气象组织(WMO)执行委员会第69次会议上,中国气象厅正式被认定为世界气象中心(WMC)。这标志着我国气象业务服务的总体水平进入世界先进行列,在世界气象业务机构、技术交流等方面发挥着我国主导和中枢的作用,进一步提高了我国在世界气象舞台上的标记度、国际影响力和国际贡献率。根据最新WMO? 《全球资料加工和预报系统手册》规定,目前全球气象业务预报系统由世界气象中心、地区专业气象中心和国家气象中心三层结构组成。

世界气象中心对工作能力的要求是,要具备同时运行全球确定性数值天气预报系统、全球集合数值天气预报系统和全球长期数值预报系统的能力。这对申报机关的数值预报业务技术水平和产品质量提出了非常高的要求。这次会议共确认了5个新的世界气象中心。除中国外,四个中心分别位于欧洲中期天气预报中心、英国埃克塞特、加拿大蒙特利尔和日本东京。此前,有三个世界气象中心,分别位于美国华盛顿、俄罗斯莫斯科和澳大利亚墨尔本。

中国气象局是唯一的发展中国家的世界气象中心。过去几年里,中国气象厅重视发展数值预报业务,以提高预报准确性这一核心目标为中心,不断提高数值预报核心技术的自主研发和创新能力,开发和完善数值预报业务技术体制。目前,正在加快建设以GRAPES为重点的数值预报业务体系,并为开发下一代数值预报模型系统进行技术储备。此次会议认为中国气象厅国家气象中心是大气沙尘暴预报地区专门气象中心,有助于中国和亚洲其他国家共同预防沙尘暴的影响。

中国气候的形成的原因是什么

海洋是全球气候系统中的一个重要环节,它通过与大气的能量物质交换和水循环等作用在调节和稳定气候上发挥着决定性作用,被称为地球气候的“调节器”。占地球面积71%的海洋是大气热量的主要供应者。如果全球100米厚的表层海水降温1摄氏度,放出的热量就可以使全球大气增温60摄氏度。海洋也是大气中水蒸气的主要来源。海水蒸发时会把大量的水汽从海洋带入大气,海洋的蒸发量大约占地表总蒸发量的84%,每年可以把36000亿立方米的水转化为水蒸气。因此,海洋的热状况和蒸发情况直接左右着大气的热量和水汽的含量与分布。同时,海洋还吸收了大气中40%的二氧化碳,而二氧化碳被认为是导致气候变化的温室气体之一。

另一方面,气候变化对海洋也造成了巨大影响。气温上升导致海平面和海水温度随之升高,而海洋对二氧化碳的过度吸收则引发了海水酸化,这些都对海洋和海岸生态系统造成破坏,被认为是珊瑚白化、死亡、小岛屿遭淹没等一系列问题的根源。以印尼为例,该国海洋事务和渔业部长表示,在未来几十年里印尼将有很多岛屿因为海平面上升而沉入海中。而澳大利亚昆士兰大学环境学家奥维也发表报告称,如果不马上行动,地球上的珊瑚礁将在本世纪末全部消失。此外,气候变化还使海洋的气候模式与洋流发生变化,从而加大了海洋灾害的程度。尤其是海水酸化后发生倒灌,进入陆地后会对河口、入海口等生态系统造成重大影响。

海洋性气候是地球上最基本的气候类型。总的特点是受大陆影响小,受海洋影响大。在海洋性气候条件下,气温的年、日变化都比较和缓,年较差和日较差都比大陆性气候小。春季气温低于秋季气温。全年最高、最低气温出现时间比大陆性气候的时间晚;最热月在8月,最冷月在2月。

影响海洋气候的主要因素是太阳辐射、海洋环境和大气环流。太阳辐射是海水和大气增温的主要能源,是大气中许多物理过程的基本动力。海面是低层大气的下垫面,海水比热大,对太阳辐射的反射率小,加上海洋辽阔,体积大,因而海洋成为地球的一个巨大的热量和水分的贮存库。到达地球表面的太阳辐射能,大约一半被海水吸收和贮存,然后海水又以长波辐射、潜热和感热的形式向大气输送热量,推动大气运动。海洋在水分循环中向大气提供大量水分。海陆分布和海流寒暖等环境因素影响着热量平衡、水量平衡和大气环流,形成各海区气候的差异。大气环流可促进南北之间或东西之间的热量和水分交换,使气候不仅受附近海洋环境的制约,还受其他非海洋环境的影响。

由于海洋巨大水体作用所形成的气候。包括海洋面或岛屿以及盛行气流来自海洋的大陆近海部分的气候。海洋气候有以下特点:①气温年变化与日变化都很小,在洋面上甚至观测不到日变化。年变化的极值一般比大陆后延1个月,如最冷月为2月,最暖月为8月。在高纬地区最冷月还可能是3月,最暖月也可能到9月。秋季暖于春季。②降水量的季节分配比较均匀,降水日数多,但强度小。多云雾天气,湿度高。③在热带海洋多风暴,如北太平洋西南部分与中国南海是台风生成和影响强烈的地区。热带风暴是一种十分重要的气象灾害。多数临近海洋的大陆地区,都具有海洋性气候特征,西欧沿海地区是大陆上典型的海洋性气候区。

信风(trade

wind)在赤道两边的低层大气中,北半球吹东北风,南半球吹东南风,这种风的方向很少改变,它们年年如此,稳定出现,很讲信用,这是trade

wind在中文中被翻译成 “信风”的原因。

信风的形成与地球环流有关,太阳长期照射下,赤道受热最多,赤道近地面空气受热上升,在近地面形成赤道低气压带,在高空形成相对高气压,高空高气压向南北两方高空低气压方向移动,由于受到地转偏向力的影响,在南北纬30度附近偏转成与等压线平行,大气在此处堆积,被迫下沉,在近地面形成副热带高气压带。此时,赤道低气压带与副热带高气压带之间产生气压差,气流从副热带高气压带流向赤道低气压带。在地转偏向力影响下,北半球副热带高压中的空气向南运行时,空气运行偏向于气压梯度力的右方,形成东北风,即东北信风。南半球反之形成东南信风。

季风(monsoon),由于大陆及邻近海洋之间存在的温度差异而形成大范围盛行的,风向随季节有显著变化的风系,具有这种大气环流特征的风称为季风。

季风(monsoon)是由海陆分布、大气环流、大陆地形等因素造成的,以一年为周期的大范围对流现象。亚洲地区是世界上最著名的季风区,其季风特征主要表现为存在两支主要的季风环流,即冬季盛行东北季风和夏季盛行西南季风,并且它们的转换具有暴发性的突变过程,中间的过渡期实短。一般来说,11月至翌年3月为冬季风时期,6~9月为夏季风时期,4~5月和10月为夏、冬季风转换的过渡时期。但不同地区的季节差异有所不同,因而季风的划分也不完全一致。季风是大范围盛行的、风向随季节变化显著的风系,和风带一样同属行星尺度的环流系统,它的形成是由冬夏季海洋和陆地温度差异所致。季风在夏季由海洋吹向大陆,在冬季由大陆吹向海洋。

季风是由太阳对海洋和陆地加热差异形成的。夏季时,由于海洋的热容量大,加热缓慢,海面较冷,气压高,而大陆由于热容量小,加热快,形成暖低压,夏季风由冷洋面吹向暖大陆;冬季时则正好相反,冬季风由冷大陆吹向暖洋面。

夏季吹西南风,冬季吹东北风。这是因为夏季当气流从南半球跨越赤道进入北半球时,由于地球的自转效应,气流会受到一个向右的惯性力作用,这个力就是地转偏向力(科里奥利力)。由于地转偏向力的作用,气流在向北的运行过程中向右偏,形成了西南风。此外,受青藏高原的地形作用及其他因子的影响,东亚的季风比南亚地区更复杂。

海陆风的水平范围可达几十公里,垂直高度达1~2公里,周期为一昼夜。白天,地表受太阳辐射而增温,由于陆地土壤热容量比海水热容量小得多,陆地升温比海洋快得多,因此陆地上的气温显著地比附近海洋上的气温高。陆地上空气柱因受热膨胀,因此海风从每天上午开始直到傍晚,风力以下午为最强。日落以后,陆地降温比海洋快;到了夜间,海上气温高于陆地,就出现与白天相反的热力环流而形成低层陆风和铅直剖面上的陆风环流。海陆的温差,白天大于夜晚,所以海风较陆风强。如果海风被迫沿山坡上升,常产生云层。在较大湖泊的湖陆交界地,也可产生和海陆风环流相似的湖陆风。海风和湖风对沿岸居民都有消暑热的作用。在较大的海岛上,白天的海风由四周向海岛辐合,夜间的陆风则由海岛向四周辐散。因此,海岛上白天多雨,夜间多晴朗。例如中国海南岛,降水强度在一天之内的最大值出现在下午海风最强的时刻。

台风(飓风)是形成于热带或副热带海面温度在26℃以上的广阔海面上的热带气旋。按世界气象组织定义:热带气旋中心持续风速在12级至13级(即每秒32.7米至41.4米)称为台风(typhoon)或飓风(hurricane),飓风的名称使用在北大西洋及东太平洋;而北太平洋西部(赤道以北,国际日期线以西,东经100度以东)则称为台风,在每年的夏秋季节,我国毗邻的西北太平洋上会生成不少名为台风的猛烈风暴,有的消散于洋上,有的则登上陆地,带来狂风暴雨。

热带气旋(Tropical

Cyclone)是发生在热带或副热带洋面上的低压涡旋,是一种强大而深厚的热带天气系统。它象在流动江河中前进的涡旋一样,一边绕着自己的中心急速旋转,一边随周围大气向前移动。在北半球热带气旋中的气流绕着中心以逆时针方向旋转,在南半球则相反,而这种情况的出现主要是受地球自转所产生的科里奥利力影响。

热带气旋的生命史可分为生成、成熟和消亡三个阶段。其生命期平均为一周左右,短的只有2-3天,最长可达一个月左右。热带气旋的生成和发展需要巨大的能量,因此它形成于高温、高湿和其它气象条件适宜的热带洋面。据统计,除了东南太平洋之外全球的热带海洋上都有热带气旋生成。

台风的形成至少有两个条件:1、比较高的温度

2、充沛的水气。烧开水时,锅底的水会往上升,这是因为锅底的水受热膨胀的原故。空气也是这样,当底层的空气受热后,就会往上升。在气温较高的区域里,大气里发生一些扰动大的空气就会往上升,使地面的气压降低,这时上升区域的空气源源不断流入上升区里,因地球自转的关系,使流入的空气像车轮一样转动起来,这就是产生台风的一个原因。当上升空气膨胀变冷后,其中的水气冷却凝结成水滴,要放出热量,这又助长了低层空气不断上升,使地面的气压降的更低,空气旋转的更加猛烈,这就形成了台风。

什么地方同时具有这两个条件呢?只有在热带的海洋面上。那里的海洋面上的气温非常高,使低层空气可以充分接受来自海洋面的水。那里又是地球上水气最丰富的地方,而这些水气是台风形成发展的主动力。没有这个原动力,台风即使形成也会消散。其次,那里离赤道近,地球自转所产生的偏转力有一定的作用,有利于台风发展气旋式环流和气流辐合的加强。第三、是热带海洋面情况中纬度单纯。因此,同一海域上方的空气,往往能保持较长时间的定常条件,使台风有充分的时间积蓄能量,酝酿出台风。在这些条件配合下,只要有合适的触发机制,例如:高空出现辐散气流或南北半风在赤道稍北地方相遇等,台风就会在某些热带海洋区域形成并增强。根据统计,在热带海洋,台风常常产生在洋面温度超过26、7度以上的地区。主要在菲律宾以东的海洋、我国南海、西印度群岛以及澳洲东海岸等。这些地方海水温度比较高,也是南北两半风相遇之处,因此一年中常有20多次台风诞生。

洋流又叫海流,是指大洋表层海水常年大规模的沿一定方向进行的较为稳定的流动。洋流是地球表面热环境的主要调节者,巨大的洋流系统促进了地球高低纬度地区的能量交换。洋流与所经流经区域之间,也通过能量交换改变其环境特征。围绕副热带高压的洋流成为副热带环流。该环流的中心大约在南北纬25~30的地区。在赤道附近受东北信风和东南信风的共同作用,形成自东向西流动的赤道洋流把南北半球的赤道洋流分割开来。

洋流可以分为暖流和寒流。若洋流的水温比到达海区的水温高,则称为暖流;若洋流的水温比到达海区的水温低,则称为寒流。一般由低纬度流向高纬度的洋流为暖流,由高纬度流向低纬度的洋流为寒流。海轮顺洋流航行可以节约燃料,加快速度。暖寒流相遇,往往形成海雾,对海上航行不利。此外,洋流从北极地区携带冰山南下,给海上航运造成较大威胁。

进入70年代后,全世界出现的异常天气,有范围广、灾情重、时间长等特点。在这一系列异常天气中,科学家发现一种作为海洋与大气系统重要现象之一的“厄尔尼诺(el

nino)”潮流起着重要作用。“厄尔尼诺”是西班牙语的译音,el是阳性定冠词,nino原意是“神童”或“圣明之子”。相传,很久以前,居住在秘鲁和厄瓜多尔海岸一带的古印第安人,很注意海洋与天气的关系。他们发现,如果在圣诞节前后,附近的海水比往常格外温暖,不久,便会天降大雨,并伴有海鸟结队迁徙等怪现象发生。古印第安人出于迷信,称这种反常的温暖潮流为“神童”潮流,即“厄尔尼诺”潮流。

厄尔尼诺暖流,太平洋一种反常的自然现象,在南美洲西海岸、南太平洋东部,自南向北流动着一股著名的秘鲁寒流。每年的11月至次年的3月正是南半球的夏季,南半球海域水温普遍升高,向东流动的赤道暖流得到加强。恰逢此时,全球的气压带和风带向南移动,东北信风越过赤道受到南半球自偏向力(也称自转偏向力)的作用,向左偏转成西北季风。西北季风不但削弱了秘鲁西海岸的离岸风——东南信风,使秘鲁寒流冷水上泛减弱甚至消失,而且吹拂着水温较高的赤道暖流南下,使秘鲁寒流的水温反常升高。这股悄然而至、不固定的洋流被称之为“厄尔尼诺暖流”。

拉尼娜是西班牙语“La

Nia”的音译,La是阴性定冠词,Nia是小女孩,圣女的意思,是与厄尔尼诺现象相反,也称为“反厄尔尼诺”或“冷”,它是指赤道附近东太平洋水温反常下降的一种现象,表现为东太平洋明显变冷,同时也伴随着全球性气候混乱,总是出现在厄尔尼诺现象之后。

我国有漫长的海岸线,广大的领海,众多的

岛屿,为了发展海产捕捞和养殖,开发海洋,为了发展海上贸易及保卫祖国的海疆,应大力发展海洋研究,开发海岛,增加海岛气象观测点,建立遥测气象站,做好民用和军用气象服务。

地理上的高低压对气候有什么影响,什么时候会产生?

中国气候的形成主要是由于地理位置、地形和气候系统等因素的共同作用。

首先,中国地处东亚大陆,位于东经73°-135°,北纬18°-53°之间,地理经度较宽,纬度较窄,横贯中国大陆,形成了中国独特的地理环境。其次,中国大陆西部有青藏高原,东部有海洋,南部有南海,北部有内陆,形成了多种地形,如山脉、平原、河流、湖泊、岛屿等,这些地形结构影响着中国的气候环境。

此外,中国气候的形成还受到气候系统的影响。中国位于亚热带和温带的过渡地带,地理位置上受到太平洋暖流和东亚冷涡的共同影响,使中国大部分地区气候温和,无霜期长,年降水量大,常年有降水。此外,中国大陆西部高原上的冷空气和东部沿海地区的暖海洋气流的碰撞,也对中国气候的形成有重要影响。

最后,中国气候的形成还受到全球气候变化的影响,全球气候变暖会导致中国大部分地区气温上升,降水量减少,这些变化也会影响中国气候的形成。

总之,中国气候的形成主要是由于地理位置、地形和气候系统等因素的共同作用。地理位置使中国处于亚热带和温带的过渡地带,受到太平洋暖流和东亚冷涡的共同影响,使中国大部分地区气候温和,无霜期长,年降水量大,常年有降水;地形结构使中国气候形成多样性;气候系统的变化也会影响中国气候的形成。

亚洲气候低压和高压中心分别在哪里?尽快在两天内查出来.谢谢!

因为低气压空气是往上升的,而往上升的原因就是因为它的温度高,高气压空气是往下的,冷空气比较沉,至于为什么,就像是烧开水一样,水蒸气呼呼往上升。也就气温低,故气流下沉,而形成高压,气温高,气流上升,而形成低压。不是形成高压后才气温降低的。

什麽时候产生,1、北半球因海陆相间分布,纬向分布的气压带被分成几个闭合的高低压系统,并随季节而变动。

季节 陆地 海洋

冬季 蒙古高压、北美高压 阿留申低压、冰岛低压

夏季 印度低压、北美低压 夏威夷高压、亚速尔高压

大气活动中心:冬夏在海陆出现的闭合的高低压中心

永久性大气活动中心:常年存在的(海上的四个高低压系统)

半永久性的大气活动中心:随季节出现的(陆地上的四个高低压系统)

、南半球40?S以南,无论冬夏,等压线基本呈纬向分布,而40?S以北,冬季高压带环绕全球,夏季陆地是低压系统,海洋则是高压系统。

而高压向低压

未来气候变化测量的不确定性最关键的是?

大气环境

一、考试内容分析

1、大气的组成及氮、氧、二氧化碳、水汽、臭氧和固体杂质等主要成分的作用

低层大气组成:稳定比例的干洁空气(氧氮为主)、含量不稳定的水汽、固体杂质

氮--生物体基本成分

氧--生命活动必需的物质

二氧化碳--光合作用原料;保温作用

臭氧--地球生命保护伞,吸收紫外线

水汽和固体杂质--成云致雨;杂质:凝结核

2、大气的垂直分层及各层对人类活动的影响

大气分层 气温随高度变化 气流状况 其它特征 与人类关系

对流层 越高越低 对流 占3/4大气质量;水汽和尘埃;各纬度层高不一致 天气现象

平流层 越高越高 平流 高空飞行;存在臭氧层

高层大气 存在电离层(无线电通讯;太阳活动干扰短波通讯

3、大气的受热过程

(1)根本能量源:太阳辐射(各类辐射的波长范围及太阳辐射的性质--短波辐射)

(2)大气的受热过程(大气的热力作用)--太阳晒热大地,大地烤热大气

大气对太阳辐射的削弱作用:三种形式及各自现象(用实例说明)

影响削弱大小的主要原因:太阳高度角(各纬度削弱不同)

大气对地面的保温作用:

了解地面辐射(红外线长波辐射);大气辐射(红外线长波辐射)

保温作用的过程:大气强烈吸收地面长波辐射;大气逆辐射将热量还给地面

(图示及实例说明--如霜冻出现时间;日温差大小的比较)

保温作用的意义:减少气温的日较差;保证地球适宜温度;维持全球热量平衡

4、大气垂直运动和水平运动的成因

(1)大气运动的根本原因:冷热不均(各纬度之间;海陆之间)

(2)大气运动形式:

最简单形式:热力环流(图示及说明);举例:城郊风;海陆风;季风主要原因

热力环流分解:冷热不均引起大气垂直运动

水平气压差 水平气流由高压流向低压

大气水平运动(风):

形成风的根本原因:地表受热冷热不均

形成风的直接原因:水平气压差(或水平气压梯度力)

影响风的三个力:水平气压梯度力;地转偏向力;地表磨擦力

风向的决定:1力风(理论风)--垂直于等压线,高压指向低压

2力风(高空风)--平行于等压线,北右偏,南左偏

3力风(实际地表风)--斜穿等压线,北右偏,南左偏

注意北半球实际地表气压场中的某点风向的画法

5、三圈环流与气压带、风带的形成

(1)无自转,地表均匀--单圈环流(热力环流)

(2)自转,地表均匀--三圈环流

(3)三圈环流的组成:0-30低纬环流;30-60中纬环流;60-90高纬环流

地表形成7压6风:纬向分布的理想模式(带状)

各气压带的干湿状况(低压湿;高压干)

各风带的风向及干湿状况(信风一般较干;西风较湿)

极锋:60度附近,由盛行西风和极地东风相遇形成

气压带和风带随太阳直射点的季节性南北移动而移动

(4)海陆分布对气压带和风带的影响:实际地表状况(块状)

最重要的影响:海陆热力差

表现(大气活动中心):北半球7月(夏季):亚欧大陆-亚洲低压;太平洋上高压

北半球1月(冬季):亚欧大陆-亚洲高压;太平洋上低压

高压在蒙古-西伯利亚地区 叫做蒙古-西伯利亚高压

低压在印度半岛 叫做亚洲低压或印度低压

(5)季风环流(重视图示)

概念理解:是全球性大气环流的组成部分;东亚季风最典型

季风的成因:主因--海陆热力差(可解释东亚的冬夏季风;南亚的冬季风)

南亚夏季风的成因--南半球东南信风北移过赤道右偏成西南风

(或概括说:气压带和风带的季节移动)

季风的影响:季风的共性特点:雨热同期;降水量季节变化大,易有旱涝灾

东亚的两种季风气候及各自分布区(以秦淮一线为界);各自气候特点

--温带季风气候:秦淮以北季风区;冬干冷;夏湿热

--亚热带季风气候:秦淮以南季风区;冬温和少雨;夏湿热

--东亚两种季风气候的冬夏季风风向相同,成因相同

--注意季风区城市工业布局中大气污染企业的分布

南亚的热带季风气候:

--全年高温,旱季(东北季风控制)和雨季(西南季风控制)交替

季风区是世界上水稻种植业主要分布地区

--东亚、南亚和东南亚的季风气候区和东南亚的热带雨林气候区

6、大气环流与水热输送的关系——是对大气环流作用的总结

(1)全球性的大气环流:

促进了高低纬度之间、海陆之间的热量与水汽的交换;

调整了全球的水热分布;

是各地天气变化和气候形成的重要因素

(2)几类重要气候的成因:

★地中海气候:

南北纬30-40之间大陆西岸;冬受西风控制,暖湿;夏受副高控制,干热

★热带草原气候:

南北纬10-20度之间;全年高温,雨季受赤道低压控制,干季受信风控制

★温带海洋性气候:

南北纬40-60之间大陆西岸;全年受西风控制,气候暖湿

★热带雨林气候:赤道附近;全年湿热,终年受赤道低压控制

★三种季风气候:(见以上分析)

7、锋面、低压、高压等天气系统的特点

1 锋面系统

锋面类别 图示 符号表示 过境前天气 过境时天气 降水位置 举例

冷锋

暖气团控制:晴;气压低 阴天、下雨、刮风、降温 锋后 冬寒潮;

夏我国北方暴雨

暖锋

冷气团控制:晴;气压高 连续性降水

锋前

2 低压(气旋)和高压(反气旋)系统

气压:高低压

气流:气旋和反气旋

图:会判断;会画风向

中心气压 水平气流方向 垂直气流方向 中心天气状况 举例 其它影响

气旋 低 北逆南顺 向上 阴雨 亚洲低压 沿槽线形成锋面

反气旋 高 南顺北逆 向下 晴 亚洲高压

3 ★锋面气旋(重要!)

要求:图上每一个天气系统的识别;

不同地点所受天气系统的控制及出现的天气现象

8、地理位置、大气环流、地形等因素对气候的影响

8-1气候因子分析

1 地理位置

A纬度位置:决定太阳辐射——气候差异的最基本原因——决定热量或气温

B海陆位置:

例如温带海洋性气候和温带大陆性气候;海洋性气候温差小,湿度较大;大陆性反之

大陆东岸季风气候形成是由于海陆之间的热力性质的差异

2 大气环流(气压带和风带)

特点:双重性质——各纬度、海陆之间水热交换;直接控制某地气候特点(水热状况)

3 下垫面(地表状况);最近地面大气直接热源与水源

4 其它影响气候的因素:人类活动、洋流(寒流降温减湿;暖流增温增湿)

8-2气候类型

1 气候特点(会判断气温降水图;会描述)

气候要素:气温、降水

以温定带——月均温在15度以上,为热带气候

月均温最低在0-15度,为亚热带气候

月均温最低在0以下,温带气候(温带海洋性气候除外)

以水定型——热带气候分为四种:

热带雨林气候:全年多雨;

热带沙漠气候:全年干旱;

热带季风气候:旱雨两季

热带草原气候:旱雨两季

——亚热带气候分为两种:

亚热带季风气候:雨热同期

亚热带地中海气候:冬雨夏干

——温带气候分为三种:

温带季风气候:雨热同期

温带大陆性气候:全年少雨

温带海洋性气候:全年湿润

2 气候成因

季风气候成因:三种季风气候

气压带和风带交替控制气候:

地中海气候(副高和西风);热带草原气候(信风和赤道低压)

单一气压带和风带控制气候:

热带雨林气候(赤道低压);温带海洋性气候(西风)

3 气候分布

大陆东岸气候:三种季风气候

大陆西岸气候:地中海气候、温带海洋性气候

大陆内部气候:温带大陆性气候

9、地球温室效应、臭氧层的破坏、酸雨等现象产生的原因及危害

现象 产生原因 污染物 危害 对策

温室效应 1、 燃烧矿石燃料

2、 毁林特别是热带森林的破坏 二氧化碳 1、 海平面上升(原因?)对沿海低地构成直接威胁

2、 引起各地区降水和干湿状况的变化,3、 进而4、 导致世界各国经济结构的变化(具体表现?) 提高能源利用率,用新能源;

努力加强国际间的合作;

植树造林

臭氧层的破坏 使用制冷设备等消耗臭氧物质 氟氯烃等 太阳紫外辐射增加:

直接危害人体健康;

对生态环境和农林牧渔业造成破坏 全球合作,减少消耗臭氧层物质的排放;

积极研制新型制冷系统

酸雨 燃烧化石燃料(主要是燃煤);

汽车尾气排放 二氧化硫和氧化氮等酸性气体 水体酸化,影响鱼类生长乃至死亡;

酸化土壤,危害森林和农作物生长;

腐蚀建筑物和文物古迹

危及人体健康 1、 最根本途径:减少人为硫氧化物和氮氧化物的排放——研究煤炭中硫的综合开发和利用(如清洁煤技术;清洁燃烧技术;废气再利用)

2、 燃烧低硫煤或其它清洁能源

天气和气候的特点是什么

气候变化:大趋势中的不确定性

不确定性并不代表我们可以忽视未来,不取任何行动绝非明智的选择

英国气象局哈德利中心的杰夫·奈特(Jef Knight)和他的八名同事发现,全球变暖在过去10年里发生了停顿。从1999年到2008年,世界变暖了0.07°C±0.07°C,并不是预测中的0.20°C。考虑到厄尔尼诺和拉尼娜现象并进行修正后,气温变化的幅度刚好是0°C。他们的研究结果发表在今年的《美国气象学会公报》增刊上。

研究者们对于全球变暖“打盹”的确切原因持有不同解释,但一致的意见是,没有一种自然界的力量能够长时间对抗温室气体带来的变暖。在科学家的模型中,极少会出现长于15年的变暖暂停现象,所以许多人认为升温会在今后几年内恢复。

全球变暖仍然被看作是一个大趋势,尽管科学家的研究结果中仍然存在许多不确定性。

喜马拉雅山的未来

联合国间气候变化专门委员会(IPCC)在其第四份气候变化评估报告中指出,喜马拉雅山的冰川正在以超过世界其他地区的速度退缩,可能到2035年就会完全消失。

英国《自然》杂志报道说,不丹境内有983个冰川和2794个冰川湖,喜马拉雅山冰川的快速融化使得其中一些湖产生致命的洪水。图托麦措(Thorthormi)冰川湖是不丹最大的冰川湖,在10年前,科学家们还从未想过它会对人们构成什么威胁,2001年尼泊尔对区域威胁湖泊的研究中也还没有将它纳入视野。然而现在图托麦措的水塘正在以令人惊异的速度扩大。

不丹1994年的一次冰川洪水向河中释放了1800万立方米的水,造成21人死亡。一组科学家预测,由于图托麦措冰川湖不断增加的水压,它和另一个叫做Rapstreng的湖之间的冰碛可能在2010年垮塌,释放出5300万立方米的水。这一造成的死亡人数可能是1994年的十倍。

比测量中的不确定性更复杂的是“模型”的不确定性。

■英国一个研究小组发现,全球变暖在最近10年似乎出现了“打盹”现象,但是科学家相信,没有一种自然界的力量能够长时间对抗温室气体带来的变暖。

■印度冰川学家的一项新近研究认为喜马拉雅地区冰川加速融化的观点是一种错误的印象。但著名冰川学家瑞格诺表示,他不认为那篇报告能够得到数十年来的数据的支持。

■对于气候系统和气候变化可能带来的冲击,有很多情况是我们没有完全理解其物理、化学和生物过程的。这种不确定性比数字上的不确定性更难以描述和处理。

■问题的关键不是全球变暖,不是水,不是能源,不是饥饿,而是所有这些加在一起,是我们如何走上一个更聪明、更少自我毁灭的道路,以便在我们这个星球上生活下去。

“喜马拉雅地区变暖的速度比全球变暖的速度快五倍还要多。”美国宇航局(NASA)哥达德太空飞行中心的大气科学家威廉姆·劳(Wiliam Lau)说,“这种不同让我们不难得出结论,温室气体不是造成此区域变化的唯一因素。这里肯定有当地的现象在起作用。”

劳的一项新研究发现,亚洲的化石燃料燃烧产生的黑炭附着在尘土上随风飘到喜马拉雅地区时,会被困在山麓之间。黑炭吸收太阳辐射,在山体上空形成一层温暖的空气,这成为喜马拉雅山冰川冰雪融化的主因。

劳的研究结论是通过数值分析得到的,一些实地的考察正在试图验证他的结果。劳并不是第一个提出这个观点的人,此前已经有其他研究提出黑炭对于喜马拉雅地区升温的贡献与温室气体一样多。

此前有研究表明,自1960年代初以来,喜马拉雅冰川的面积已经减少了超过20%。在这种背景下,印度被认为是另一个受到喜马拉雅山冰川融水严重威胁的国家,它也成为媒体反映气候变化紧迫性的热点地区。相关报道称,距离加尔各答150公里的海边小岛苏得班斯原本有140个村庄,其中50个村庄已经被洪水冲毁,160人丧生。恒河的洪水被认为正在由于冰川的加速融化而变得越发暴戾。

然而,一项新近发表的研究却认为喜马拉雅地区冰川加速融化的观点是一种错误的印象。这种错误印象基于对少数冰川的研究,便得出了印度大约一万个喜马拉雅山冰川因气候变化而快速退缩的结论。

印度的冰川学家Vijay Kumar Raina在11月份发布的一份报告中,引用了数个印度研究小组的遥感和海拔5000米以上地区的考察结果,得到以上结论。他在报告中提到了恒河的源头之一甘戈里(Gangotri)冰川。该冰川在1934年到2003年间平均每年退缩22米,但在2004年和2005年,退缩速度减小到了每年12米,而自2007年9月起,退缩“处于停滞”。

克什米尔的希亚琴(Siachin)冰川长七十多千米,是世界上最长的高山冰川之一。有媒体报道称希亚琴冰川已经退缩了50%,而Raina说这是完全错误的。他在报告中称希亚琴冰川“在过去50年里没有显示出明显的退缩”。

美国《科学》杂志访了几名西方的冰川学家,他们对Raina的报告表示赞同,即便该报告的结论与IPCC的报告相左。美国内布拉斯加大学的喜马拉雅山冰川专家约翰·施罗德(John Shroder)断言IPCC报告中关于喜马拉雅山冰川的判断是错误的。“他们只靠很少的数据就跳到结论上去了。”他说。

对于Raina等人观察到的现象的一种解释是,对喜马拉雅山冰川稳定性起到更大作用的是降雪状况而不是气温。此外,科学家对高海拔冰川对气候变化的响应时间尚未有充分的研究。

另有一项新近的研究还表明,恒河的水主要来自于雨季的降水,相比之下,冰川每年只贡献恒河水量的3%到4%。

不确定性的根源

美国卡内基梅隆大学的气候学家格兰杰·摩根(Granger Morgan)在2009年为美国国家大气和海洋管理局(NOAA)撰写的一份报告中描述了气候科学中的不确定性的根源。

第一个来源是测量中的随机错误。他举例说,你和你的朋友读同一个温度计的显示,读出的数字会有微小的差异。类似的情况也发生在更加先进的仪器上。另一种情况是系统错误。同样是温度计,生产过程中如果在玻璃上标注刻度时就有偏差,那么从这支温度计上读出的所有数字都会偏高或者偏低。同样的情况也会发生在更先进的仪器上。

比这些更为复杂的是“模型不确定性”。模型的作用是对未来有根据的猜测。科学家通过了解基本前提、评估潜在的效应并将附加的细节整合到模型中,便能够减少猜测并更加接近可能的未来状况。“决策者、管理者、实践者都喜欢确定的东西,他们寄希望于科学能够提供确定性。他们希望他们所取的行动能够获得预期的效果。”美国雷斯岬观鸟站保育科学会的约翰·韦恩斯(John Wiens)及其同事在近期的《美国科学院院刊》(PNAS)上发表文章说,“但是他们似乎在每一个路口都要面对不断增加的不确定性。他们所依赖的系统不仅复杂,而且充斥着反馈、间接效应、非线性因素,所有这些都破坏了确定性。现在,不仅仅是未来总呈现出不确定,连预测未来所用的工具都被包围在各种不确定性之中。”

一些模型的研究显示出与人们印象相反的结果。在一个包含了气候和地质异质性的模型里,2051到2080年间山区消失的物种的数量仅仅是单以气候考虑的模型的一半。但是,对于平原上的物种,前一个模型预测的数量则是后者的两倍。

发表在《全球生物地球化学循环》上的一篇文章则在模型中发现,当考虑到二氧化碳的肥效作用之后,它们就会抵消掉气温上升带来的负面作用,以前预测的大规模的植物死亡不会发生,赤道雨林的生物群落会保持不变或是由更潮湿和富饶的生物群落所代替。

在另一个个案研究中,失去“家园”的蝴蝶的种类并没有出现大幅度下降。由于未知的原因,这些蝴蝶能够在碎片化的森林里生存下来。“这些研究提示出了我们在模拟和预测气候变化对生物多样性的影响时遇到的不确定性的程度。”牛津大学长期生态实验室的凯西·威利斯(Kathy Wilis)在《科学》杂志上发表评论说。

“对于气候系统和气候变化可能带来的冲击,有很多情况是我们没有完全理解其物理、化学和生物过程的。这就是说,很多情况下我们不知道其内在的‘因果模型’。”摩根写道,“这种不确定性比数字上的不确定性更难以描述和处理。”就像是牛顿提出万有引力定律之前,人们隐约知道引力的存在,却不知道它是怎么运作的。

最后一种不确定性的来源是无知。“只有当我们积累到越来越多的证据,显示世界不是以我们认为的那种方式运行,科学家才会开始注意到也许有一些基本的东西是以前没有注意到的。”摩根写道,就好像伽利略注意到地球绕着太阳转,却不知道太阳也不是宇宙的中心,气候系统或气候变化的问题当中可能还存在一些我们仍然完全不知道的事情,我们现在甚至都不知道在研究中提出正确的问题。

现实是否比预测的糟糕

自IPCC第四份报告发布以来,它几乎成了人们了解气候变化的一个手册。许多时候,科学家会说“情况比IPCC的报告更糟糕”。然而,在另一些科学家看来,现实的情况是更为复杂的。

“事情比10年代和1980年代时想的要更加糟糕。”美国斯坦福大学的气候科学家史蒂芬·施耐德(Stephen Schneider)最近在接受《科学》杂志访时说,“但是只是少数事情‘比IPCC 2007报告更糟糕’。”

美国普林斯顿大学的地球科学家迈克尔·奥本海默(Michael Oppenheimer)有点担心气候预测中的不确定性没有被充分表达。“我们仍然无法预测海平面上升的幅度。”他说。

根据2007年发表在《科学》杂志上的一项预测,到2100年,海平面将上升将近1米。但在不同的模型得出的数字相差甚远,从数十厘米到2米不等。

奥本海默指出,在北极冰盖融化与海平面上升的问题上,我们需要小心不要把一个突发的变化推演到遥远的未来。“我有点关切的是,北极气候快速变化的紧迫性被过分强调了,或者说其中的不确定性没有被表达。”他说。

在12月14日的美国地球物理联合会(U)秋季会议上,美国阿拉巴马大学的气候学家罗伊·斯宾塞(Roy Spencer)在大会报告中讨论气候变化研究中因果关系问题带来的挑战。

研究气候模型的科学家们从卫星数据中发现,温暖的年份里云量较少。他们认为这是由于全球变暖导致了云的消散。如果是这样的话,那么就可能出现正反馈,发生强烈的全球变暖。

“我给他们的问题是,‘你们怎么知道不是云量较少造成了温暖的年份,而不是相反的过程?’结果他们不知道。他们回答不了这个问题。”斯宾塞说。

斯宾塞解释说,由于云非常复杂,我们对它们的理解又极为有限,因而IPCC的所有模型使用的都是经过高度简化的云参数来代表云。但是这些参数的计算是基于定的因果关系之上的。

他认为这些定可能导致人们的工作走向不正确的方向。斯宾塞自己的模型得出的结果是负反馈,与其他许多模型刚好相反。“全球变暖理论中的这个关键组成部分——云反馈——在现实的气候系统中是不可能直接测量的。”他说,“我们还没有发现一个鉴别因和果的好方法,所以我们无法直接测量云反馈。那么如果我们不知道反馈是怎么样的,我们也就仅仅是在猜测人类对于气候变化有多大影响。”

在去年的美国地球物理联合会秋季会议上,美国宇航局喷气推进实验室(JPL)的著名冰川学家艾瑞克·瑞格诺(Eric Rignot)在报告的结尾说,面对海平面上升,“我们不需要往山上跑,走路就行了”。

他最近对南方周末记者说,他这样说并不是否定气候变化的严重性,“我们不会很轻易地就阻止海平面上升,它不会来得很快,但它是我们需要适应而非控制的事情。”“所以在我的想法里,毫无疑问我们要迁到山上去。没有必要恐慌,但也不应认为这件事不会发生。它会发生的。”瑞格诺说。

“我不认为气候快速变化的紧迫性被过分强调了。我不认为其中的不确定性没有被充分表达。我不认为那篇喜马拉雅山冰川没有融化的报告能够得到数十年来的数据的支持。”瑞格诺表示。

“在我研究的领域,现实远远超出了预测。”瑞格诺说,“世界上每个地方的冰川都在快速融化。我们认为永恒不变的冰盖,尤其是在南极洲,已经要让海平面在2100年上升1米。”他说。

摩根在其主笔的报告中归纳出当前气候变化的三条基本认知:1)燃烧煤、石油和天然气或地面上的植物燃烧,二氧化碳会产生被释放到大气层中。这一点上是没有不确定性的。2)由于二氧化碳能够吸收热量,所以过多的二氧化碳会使气温上升,最终导致气候变化。至于气温会上升多少、速度多快,以及类似问题中的细节存在不确定性。3)为了降低二氧化碳浓度,排放量必须大幅削减。这个基本事实上不存在不确定性,但是减排的速度要多快、程度要多大才能使大气中的二氧化碳浓度达到稳定,这其中存在不确定性。

“但是不确定性并不代表我们可以忽视未来,不取任何行动绝非明智的选择。”韦恩斯等人表示。

瑞格诺认为,我们面临的问题是:我们要如何适应?我们如何更加聪明地使用我们这个行星上的环境?“问题的关键不是全球变暖,不是水,不是能源,不是饥饿,而是所有这些加在一起,是我们如何走上一个更聪明、更少自我毁灭的道路,以便在我们这个星球上生活下去。”瑞格诺说。

天气的特点是经常变化,气候的特点是相对稳定。

天气

1、涵义:大气短时间的阴晴,冷暖,风向,风速等物理状况。

2、影响天气的因素:气旋低压中心、反气旋高压中心、锋面等天气系统。

气候

1、涵义:表示一个地方多年的天气特征。

2、影响气候的因素:太阳辐射纬度位置、大气环流、地形、海陆位置、洋流、人类活动等。