1.地球环境污染现状

2.气候变化趋势与影响

3.北极恐将面临夏季无冰,是否意味着全球变暖现状很严重?

4.全球变暖的现状

5.丹麦气候变化现状和趋势

6. 我国全球变化研究现状及展望

全球气候变化的现状图片_全球气候变化的现状

多哈会议的成果有限,说明全球应对气候变化的相关努力面临重大困难,陷入自1988年国际社会启动气候变化相关谈判和应对程序以来的最低点。下面是我给大家推荐的,希望大家喜欢!

篇一

《全球气候变化应对》

[内容提要]多哈会议的成果有限,说明全球应对气候变化的相关努力面临重大困难,陷入自1988年国际社会启动气候变化相关谈判和应对程序以来的最低点。导致这一现象的原因在于,各国均将成本一收益平衡当做参与国际气候变化应对框架和机制的重要决策依据。其具体体现为碳排放覆盖率的参与度,这成为影响全球气候变化应对的关键因素。通过构建成本一收益平衡的理论模型,本文论证了全球气候变化应对框架和机制发展的双重均衡方程,指出当前应对气候变化的国际努力仍停留在相对稳定的低收入水平均衡状态上。很显然,在全球应对气候变化的程序中,必然还存在一个可以带来高收入和高的高水平均衡点。国际社会目前面临的困难是,如何寻找和确定从低水平均衡点迈向高水平均衡点的临界点并实现突破,推动各国提高参与度,推动国际应对气候变化努力向高水平均衡点迈进。

[关键词]气候变化 成本—收益分析 国际框架 均衡点

[中图分类号]P476

[文献标识码]A

[文章编号]1006-1568-201304-0042-15

自1988年国际社会在加拿大多伦多首次召开半官方的气候会议,到2012年联合国气候变化应对框架的多哈会议COP18/CMP8,有关气候变化应对的国际谈判已走过25年历程。多伦多会议提出了应对气候变化的碳减排目标,即以1988年的排放水平为基准,到2005年全球减排20%,这一目标史称应对气候变化的“多伦多目标”。现在看起来,这一目标显然过于理想化。因为在2012年多哈会议最终通过的决议里已经找不到明确的全球碳减排目标,更多的则是“希望”、“理应”、“自愿”等字眼。这意味着,经过25年的努力,国际社会在应对气候变化和碳减排上的意愿和进展可谓是不进反退,尽管全球的碳排放水平已经远高于当年。因此,颇有必要对既有的具体应对策略特别是指导国际社会气候变化应对实践的理论加以总结和检讨。

要回答这个问题,首先必须了解各国参与全球气候变化应对框架和机制的决策依据。一般认为,气候变化应对框架的有效性根本上取决于各国的参与度,国际社会最终之所以能达成这样或那样的决议,也正是因为决议必须在最大程度上反映各国的参与度。因而,作为全球气候变化的重要里程碑,最初的《京都议定书》以下简称“议定书”才将其生效条件设定为55%的排放比例,也就是附件一国家名单中至少有足够占到全球排放总量55%的国家和地区加入该议定书,其规定的各项条款才能真正生效。

需要指出的是,决定各国参与度的,是各国对参与全球气候变化治理的成本—收益计算;换句话说,成本—收益计算是各国气候变化外交的决策基础。例如,美国参议院在讨论表决议定书时有过这样的阐述,“任何气候变化国际协议都必然会对国内经济产生系列的金融经济影响”。具体而言,所谓的“经济金融影响”实际上指的便是成本与收益,即加入气候变化的相关国际协议究竟会给美国带来怎样的收益,同时又增加怎样的成本。也就是说,美国唯有在明确了这样的成本一收益关系后才能做出是否加入议定书的判断和决策。对此,在美国国会一次有关气候变化的听证会上,与会参议员在回答为何美国仍没有加入气候变化国际协议的问题时解释,“因为美国还没有弄清楚国际气候变化协议对国内经济造成的各种影响”。

基于上述逻辑,本文将以成本—收益分析为切入点,分析缘何当前全球气候变化治理机制停滞不前,认为这一现状恰好是出于成本—收益考虑导致的各国参与全球气候变化的低水平均衡。基于对更高水平平衡存在的乐观判断,本文认为,国际社会需要进一步推动各国提高参与度,使国际应对气候变化努力向更高水平的均衡迈进。

一、全球气候变化应对框架的成本收益计算

国际学术界有关全球气候变化应对框架的成本—收益分析主要通过建立各种经济学模型进行测算,其中较有代表性的方法是利用一般均衡的经济学分析方法,将一定时期内如到2055年或者2100年等的经济增长、能源利用、碳排放、气候变化模式、气候变化影响以及各种碳减排和气候变化适应政策等因素作为变数纳入到模型中,同时赋予各个变数以各种引数,然后计算出在不同排放及减排情景下的碳排放价格,以及由此产生的成本与收益。

以动态综合气候—经济模型DICE,Dynamic Integrated Climate-Economy Model的研究为例,笔者对在2009年12月国际社会就应对气候变化达成的《哥本哈根协议》进行了成本收益分析表1。在这一模型中,成本和收益的计算依据有三个:

一是在《哥本哈根协议》的气候变化应对路径下,全球及各国由于受气候变化影响而造成的直接净损失,净损失的含义其实已经包括了成本和收益两方面的因素;

二是在《哥本哈根协议》下,全球及各国设定的减排路径和政策给社会经济带来的减排支出成本,这个成本大小与《协议》的规定有着很大的关联,包括技术变迁、经济增长、社会都会受到减排过程的极大影响;

三是在《哥本哈根协议》下,根据作者通过同一模型模拟出来的碳排放价格包括碳税和碳排放权的交易,以及各国要达到各自碳排放配额范围所需购买的额外碳排放量,最终计算出一个全球及各国用于支付额外碳排放配额的成本。需要指出的是,由于各国在《哥本哈根协议》下的碳减排配额分配并不均匀,考虑到各国减排能力的差异,会出现“富余”和“不足”两种情况,因而这项成本对于一些国家为正,而对于另一些国家则为负。当然,从全球的角度来看,其总额为零。

按照这样的计算框架,威廉·诺德豪斯William D.Nordhaus得出的结论是《哥本哈根协议》下到2055年全球应对气候变化的直接总支出为16,470亿美元。这个支出水平究竟是高还是低呢?在稍早的同系列研究中,诺德豪斯通过同一模型对各种气候变化应对情景下的支出成本进行了核算。他根据性质的不同将总支出分成两部分,第一部分是气候影响损失和减排成本,比较的结果是:从最优应对情景下的低成本,一直到不取任何措施以及设定过高减排或温度控制目标情景下的高成本;第二部分的支出来自碳排放配额的购买,其中碳排放价格决定了最终的购买支出,而不同气候变化应对情景意味着不同的碳排放价格。作者对此进行了排列,结果表明,气候变化应对的策略越激进,国际社会未来承担的碳排放价格就越高,这也就意味着不同国家为完成减排目标必须为购买额外的碳排放配额付出更高的成本。

值得注意的是,限于科学研究和社会经济发展上的极大不确定性,诺德豪斯及其他经济学家和气候变化研究小组,如 *** 间气候变化专门委员会IPCC和斯特恩报告,对全球气候变化应对成本一收益的计算结果在数量上未必是完全精确的。但从不同情景的排列顺序来看,他们的结论在逻辑上是站得住脚的,即对应不同的气候变化应对和发展情景,国际社会将共同承担不同的成本和收益。那么从成本一收益的视角出发,我们如何进一步理解不同气候变化应对及发展情景的主要区别呢?是什么关键因素影响着全球气候变化应对框架的成本与收益?理解这些问题将有助于构建一个国际气候变化应对的经济学意义上的成本一收益模型。

二、碳排放价格、参与度与成本—收益分析

按照诺德豪斯和理查德·托尔等人有关气候变化经济影响的分析,应对气候变化的净成本影响主要有三个来源,即:气候变化的直接影响,碳减排程序的影响和碳排放价格的影响。对全球而言,前两种来源的影响总体上体现为正的净成本,而碳排放价格对净成本的影响在名义上是在各国间相互抵消后为零。但实际上,全球碳排放价格有两个源头:碳税和碳交易,如果全部的碳价格都以碳税的形式体现出来,均衡状态下碳排放价格应等同于碳减排的边际成本,从而意味着一国为本国配额之外的碳排放支付了成本。如果进而将气候变化对全球造成的损失影响纳入碳排放价格的计算范围,即完全而充分地将气候变化的外部影响内化到碳价格中,那么碳排放价格更可以成为衡量全球气候变化应对框架成本收益的指标。就此而言,在不同全球性气候变化应对框架的路径下,会产生高低不等的各种碳价格,也就体现了全球为这些不同的气候变化应对框架所支付的净成本水平。

如果赋予碳价格以新的含义,即把气候变化影响和碳减排支出都折算为碳排放价格,然后将碳排放价格作为衡量全球性气候变化应对框架成本一收益的标志性指标,则可对以往在一般均衡基础上所得出的成本收益比较结果进行重新组合和排列。以诺德豪斯在其研究中设定的15种气候变化应对情景为例,在给定时期内且其他条件不变的情况下,可对15种情景加以重新排列图1。这个新的排列说明,如果仅从时间序列的角度来看,不管国际社会取何种减排策略和路径,都会从初期的最低点然后慢慢上升。但如果取横截面的比较,不同情景间的区别就一目了然,根据前面的分析,碳排放价格的区别实则也代表了各种气候变化应对机制在成本收益上的区别。

从图1可以得出一个基本结论,即气候变化应对机制导致碳排放价格越高,其成本也就越高。如相对议定书的应对机制,能将全球气温上升控制在2~C范围内的应对机制明显成本更高;同时,相对于不包括美国碳排放的议定书而言,能够覆盖美国碳排放的议定书的成本就更高。

如果进一步比较导致碳排放价格的各种应对情景,可以发现,各种应对情景间最大的差异在于各国的参与度不同,或者说是对全球碳排放的覆盖度不同。因此可以认为,参与度是决定碳排放价格及应对机制的成本一收益水平的重要因素。

无论是议定书的应对机制,还是设定2℃的升温限制,其本质都是全球碳排放的覆盖面大小的问题。从绝对意义上讲,应对机制的覆盖度越高,则碳排放价格会越高,尽管从应对的结果看也会越有效。但问题在于,在国际社会中,应对机制的覆盖范围并非取决于碳排放价格或者应对有效性,而取决于各国对应对机制的认同度,具体表现为参与度。可依据官方表态将参与度分为三类:参与、不参与和有条件参与。以各国对议定书的态度为例,美国属于有条件参与,欧盟属于参与,中印等发展中国家属于不参与。又以《哥本哈根协议》为例,中印也都加入了有条件参与阵营。需要指出的是,从非官方角度衡量的参与度相对更为复杂,因为市场、部门或地区的参与度与官方表态未必一致,导致实际的参与度发生变化,而市场最终形成的碳排放价格反映的正是实际参与度。这样,可将图1中的纵轴换成“参与度”,进而用不同的方法观察15种不同应对机制和情景间的区别,从最低的参与度到最高的参与度,决定了具有不同特性的应对机制和情景。

将参与度与应对机制的上述关系应用到全球气候变化应对机制的实践中,并从1988年国际社会开启气候变化应对机制的谈判到2012年多哈气候大会落幕期间选取几个重要节点,便可发现,基于碳排放覆盖率的各国气候变化实际参与度的差异以及变化,决定了应对机制和目标的变化起伏图2。

在图2中,尽管控制2℃升温的应对情景要求较高的参与度接近100%,并被《哥本哈根协议》所确认。但该目标并没有被具体落实,在《哥本哈根协议》中体现为碳排放覆盖率的全球参与度非但没有提高,反而因为减排机制而有所下降。因此,从1988年至今,全球气候变化应对机制的参与度一直在递减。同一时期,国际市场的碳价格也在持续下滑,进一步说明国际社会应对气候变化和碳减排的总体意愿呈减弱趋势,印证了基于成本一收益衡量方法的气候变化应对机制在不同阶段对净成本水平评估的演变过程。

三、全球应对气候变化框架的成本—收益模型

本节将对气候变化应对的成本—收益模型加以考察。在下文所应用的函式中,Cost指应对气候变化的总成本,Benefit指应对气候变化的总收益,Y指应对气候变化的总产出或水平,mitment指各国在不同时期i的参与度或碳减排承诺水平,ert指各期的贴现程度。

一成本函式:Cost=∑fmitmentiert;

在技术进步、气候变化趋势、经济发展等因素都给定的情况下,国际社会开展气候变化应对合作的成本现值,下同取决于各国的参与度或承诺程度。既有研究表明,随着各国参与度的提高,国际社会将在参与度较低时参与初期付出更大的增量成本,但在参与度较高时参与后期成本上升趋缓。换句话说,成本函式的曲线将是递增和凸起的,即先快后慢,即图3中的成本曲线。最终,如果全球各国全部参与到合作框架中,那么成本将被固定在某个最高点上,不会无限增加。这是因为,一旦在全球建立有效合作机制控制碳排放,将全球温度的变化控制在一个可承载的范围,那么碳排放价格便不会再继续提高如图3,应对成本也就会趋于停滞。

二收益函式:Benefit=∑fmitmentiert;

同样的,在其他条件给定的情况下,国际社会开展气候变化应对合作的收益也取决于各国的参与度。根据相关研究和上述分析,参与度的提高会给全球带来更多的收益。当然,收益曲线的特征有别于成本曲线。首先,在参与度较低时初期,因为“漏出”效应的存在,提高合作水平带来的全球收益增长速度较慢;一旦合作水平达到特定水平,随着“漏出”效应显著下降,全球碳排放相关政策的有效性也会显著提高,如碳税、碳交易等。此时,全球将从合作中获得更大的好处,并出现快速的增长;这意味着,收益曲线总体将呈现出先慢后快的递增性图3中收益曲线。

收益曲线的第二个重要特征在于:在初期,由于各国参与度较低,相应国际框架的收益水平将低于成本水平,甚至在某些极端情况下收益为负。但随各国参与深入,收益曲线会以更快的速度攀升,在达到特定参与水平后将超过成本曲线。这个参与水平也就是一个均衡的参与度。

收益函式还有第三个特征,即在参与度进一步提升后,收益的增长速度极有可能出现下滑,即增长速度放慢并逐渐向成本曲线靠拢图4中收益曲线,这会使收益曲线出现变化如图4。这样便会改变成本一收益曲线间的关系,出现了两个均衡点。可把第一个均衡点Q1称之为低水平的参与均衡,第二个均衡点Q2则称之为高水平的参与均衡。

三均衡条件

第一,当成本曲线高于收益曲线时,称之为“参与不足”Under-mitment,此时全球将为之付出净成本,从而推动参与度的继续提高,一直到两者相等为止;

第二,当成本曲线低于收益曲线时,称之为“参与过度”Over-mitment,此时全球将从更高的应对参与水平中获得净收益。尽管如此,但参与度不会继续提高,而是向反方向发展即出现下滑,一直到净收益为零时。这主要是因为,当参与度过高时,一方面气候变化应对部门的净收益增加本身会削弱各国在此领域的继续投入及参与积极性,凸显其他部门投入的短缺和气候变化应对部门的投入过度;另一方面,尽管全球的总收益继续增加,但在地区分布上,收益的分配显然是不均匀的,因此也会形成和增加进一步提高参与度获得更多净收益的各种政治经济障碍。

第三,两个均衡水平的比较。根据上述分析,对全球气候变化应对的收益曲线进行模拟,则会出现先凹后凸的结果。相对于固定的成本曲线,这导致了一低一高两种均衡水平。在均衡条件都成立的情况下,两个均衡水平都可以帮助国际社会实现“参与度”的优化。也就是说,在这两个参与度水平上,至少在气候变化应对部门内部都足以形成相对稳定的状态。但显然,低水平参与度上的均衡尽管实现了部门的稳定,它对全球总产出和总的益处则低于高水平参与度。

四双均衡条件:Y=∑fmitmentiert

由第三点讨论而来的,需要引入第四个条件,即考虑了两部门产出的一般均衡条件。如果将各国气候变化应对参与度纳入到整体考虑,参与度会通过影响气候变化应对部门的内部成本一收益均衡,继而影响其他部门的成本一收益均衡,最终作用于总体水平。在目前的科学认知水平和发展阶段上,气候变化应对的参与度对经济增长总现值存在递增影响。但以一般均衡的现有分析为基础,有理由相信,气候变化应对参与度并非始终增加经济总,因为在参与度高于特定水平后,无论气候变化应对部门内部的净如何变化都会反作用于经济总体,从而导致既有成本一收益关系逆转,如图5所示。

这样,两个均衡的参与度便产生了不同的影响,低水平的均衡参与度带来较低的产出水平,高水平的均衡参与度带来较高的产出水平。从产出水平的角度来看,前者属于低收入均衡,并非理想结果,而后者则可以带来更优的。全球气候变化应对的发展历程其实就是一个既寻求成本一收益均衡,同时又实现更高产出水平的过程。总体而言,当前的国际气候变化应对框架更加接近于低收入的均衡状态,即各国在自身成本收益核算的基础上,“自由地”确定各自的参与度,先是通过2012年的多哈气候大会进行了初步确认,然后到2015年在进行反馈和总结,届时形成新的国际应对框架,进一步强化和固定气候变化部门内部的均衡。

从全球角度看,这一均衡并非最优。如图5所示,如果参与度提高,总体产出和水平也将更高。问题在于,一旦低收入的参与度均衡状态在确立后迅速得到强化甚至被固定,那么打破这一均衡、推动参与度提高并实现更优化的产出和水平将很困难。有两种可能局面将推动实现这一突破。

第一,外部条件变化,如气候变化程度加剧、国际社会对应对气候变化的偏好增加、各国 *** 对气候变化应对的认同提高及技术进步等,都会同步提高气候变化应对不同参与度上的成本或降低收益,从而推动成本曲线上移或使收益曲线下移,迫使最优的均衡参与度向右延伸。这种情况相对于外部条件发生变化后,气候变化应对部门的估值水平有所提高,从而增加了各种投入的相对价值,使参与气候变化应对程序可带来更低的机会成本和更高的总产出和。

第二,也存在内生机制推动参与度提高的可能,最主要的是参与国/地区/部门带来的示范效应。在现实世界中,各国/地区/部门对于气候变化应对的参与呈现极不均匀的状态,有的出于自发,有的则仅仅跟随。这样,参与度本身存在着微小变动的可能:主要出于各种内生原因和激励因素,参与度会不断提高,这一提高本身会带来收益和成本,而一旦参与者从中获得净收益,就有可能对其他未加入者形成示范效应,进而吸引更多的参与者。当然,如前所述,考虑到均衡条件,由示范效应导致的更高参与度所形成的额外净收益在最初阶段未必会推动参与度继续提高,反而可能使参与度下滑回落至均衡水平。但这里面存在一个“临界点”,即在某些关键性的国家/地区/部门加入到气候变化应对程序,或执行了某些标志性的减排政策后,参与度的提高便难以逆转,从而加速向下一个均衡点即高收入均衡水平汇聚,并在这个均衡点上逐步稳定下来。

基于参与度边际产出递减规律,产出函式有一个重要的定,即100%的参与度未必导致产出最大化。正如IPCC的第四次评估报告所指出的,国际社会面临多种可供选择的排放及减排情景,从“一切照旧”Business as usual到最为积极的应对情景,其排序正好是从最低的参与度>=0,到最高的参与度<100%。实际上,最终选择既不是最低也不会是最高的参与度。这证明,从无论是从成本收益,还是从产出角度来看,最低和最高的参与度都不现实。低水平参与的弊端在于无法实现部门内均衡,但高水平参与度的最大弊端则在于“过度参与”下全球在气候变化领域的过高投入会导致配置的扭曲,体现在收入曲线上就是,在一定点后,收入水平会随着参与度的进一步提高而下降。因此,从收入和的角度看,无论是低水平还是高水平的均衡,全球气候变化应对的参与度都不会越过某个界限,即图5的S点。

四、模型的应用

以上理论模型分析对当前国际社会的气候变化应对实践有着两方面的重要解释意义。一方面,国际社会在气候变化应对框架上的发展路径将受以下两种情况约束:其一,沿着本部门内部的净收益曲线移动,随着世界各国参与度的提高,国际减排应对框架的净收益会出现相应的变化图6,基于双均衡的存在,因此该曲线将呈现出倒U型的形状,与横轴参与度有两个交点Q1,Q2,意味着可能的参与度也仅会维持在这两点之间;其二,由于实现均衡的需要,Q1和Q2仍然是稳定后最有可能出现的参与度选择结果。因此,以参与度高低来衡量的气候变化应对框架将围绕这两个点出现波动。同时,在内部和外部条件的作用下,可以在两点间进行过渡。也就是说,最后参与度的选择范围将限制在Q1和Q2两点间。

另一方面,上述约束条件也符合当前各国在应对气候变化上的现实选择。第一,各国/地区/部门都不同程度地参与到气候变化应对框架中,最终必将在全球范围内体现为一个适度而均衡的参与水平Q1<=Q<=Q2,这也较好地解释了某些碳排放大国即便没有正式加入相关的国际气候变化应对和减排框架,但也通过自愿减排的形式在实际意义上参与到全球的气候变化应对程序中。这一方面是来自于这些国家/地区/部门基于自身成本一收益基础上的内生减排需要,另一方面也在一定程度上受到了其他国家/地区应对气候变化和减排的带动。

第二,近25年来国际社会在气候变化应对上进展缓慢甚至有所倒退这一事实说明,从一般均衡角度来看,尽管参与度提高有利于增加产出,但应对程度还取决于部门内部的成本收益均衡。在关键的临界点没有突破前,国际社会应对气候变化还较难跳出低收入的均衡参与水平。这样,各国显现出各种积极或消极的政策波动也就在情理之中。

第三,国际社会要走出当前的气候变化应对困境,跳出低水平均衡,就必须探索和研究影响参与度的临界物及其临界水平。可能的临界物包括:更加准确的气候变化科学研究和认知,更加巨大的气候灾难,更加系统的社会动员,更加有效而可行的政策工具,等等。当然,要想找到这一临界物及临界水平,全球还需通过更多的试错来验证。

结束语

如果以各国的参与度衡量全球气候变化应对框架的进展,多哈会议成果有限这一事实说明,气候变化应对的相关努力几乎陷入停顿,达到了自1988年国际社会开始进行谈判和框架设计以来的最低点。尽管如此,本文利用成本一收益关系的分析表明,这一低点或许正好实现了参与度决定下的均衡状态。只不过,这是一个仅可以带来低收入和低的低水平均衡点。而在全球应对气候变化的程序中,必然还存在一个可以带来高收入和高的高水平均衡,即通过较高的参与度应对气候变化有效地实现碳减排,同时又可以获得较好的效率即产出。全球气候变化应对框架唯有找到相应的临界点并实现突破,才能确保跳出低水平均衡状态,达到高水平均衡状态。

地球环境污染现状

公众大大低估了气候变化的程度和严重性,但呼吁彻底消灭人类却被高估了。公众低估这个问题的原因之一是互联网上有大量的机器帖子。根据大数据分析,此类帖子可以占到脸书上提及全球变暖内容的25%还要多。自工业革命以来,人类可以为温度的上升速度而自豪:我们改变地球表面环境的能力可以与古代蓝色细菌和古代植物相媲美。近6500年来,人类活动扭转了地球温度逐渐下降的趋势。

地球温度逐渐下降的原因是地球逐渐远离太阳,其轨道稳定。在走向稳定的过程中,地球大大减少了对太阳的光和热的吸收,并消耗了地球的主要能量。根据大爆炸原理,这也可以解释。另一个原因是,在地球物质变化的过程中,阻碍来自太阳或宇宙的电磁波和宇宙射线,电磁波和宇宙射线是导致物质内部质子或电子振荡并产生物质热量的主要物质之一,大气逐渐产生并增厚。

大气层最终稳定了地球的现状。小编认为两者都可以使地球变暖的原因,但比例不同。正是二氧化碳的高排放量使它变成这样,因为全球变暖的主要原因是人类使用了大量的化石燃料(如煤、石油等)。在过去的一个世纪里,排放了大量的二氧化碳和其他温室气体。因为这些温室气体对太阳短波辐射高度透明,对地球反射的长波辐射高度吸收,这通常被称为温室效应,它导致全球变暖。

由于全球变暖,全球降水将重新分配,冰川和冻土将融化,海平面将上升,等等。这不仅危及自然生态系统的平衡,也威胁着人类的食物供应和生存环境。我们还是应该从我做起积极的去做一些我们力所能及的小事。

气候变化趋势与影响

多元化污染严重,全球气候变化加剧。

1、多元化污染严重:地球环境面临着多种类型的污染问题。其中包括大气污染,由于工业排放和交通尾气等原因导致空气质量恶化,水体污染,由于废水排放和化学物质泄露等原因,河流、湖泊和海洋受到严重污染。此外,土壤污染、噪音污染和光污染等也对生态系统和人类健康构成威胁。

2、全球气候变化加剧:环境污染还导致全球气候变化加剧,表现为极端天气频繁发生,如暴雨、干旱、飓风等。这些天气极端对人类社会、经济和环境造成巨大影响,影响农作物产量、水供应和基础设施。

北极恐将面临夏季无冰,是否意味着全球变暖现状很严重?

基于过去近百年来仪器观测数据,国际科学界认识到地球气候正经历一次以全球变暖为主要特征的显著变化过程。间气候变化专门委员会(IPCC)第三次评估报告表明,1861年以来全球平均表面温度不断上升,20世纪上升幅度为0.6℃±0.2℃;随着全球平均表面温度的上升,雪盖和冰川退缩,海平面上升,大气和海洋环流发生变化,气候变率增大,极端天气气候增多;北半球陆地中高纬度地区20世纪降水量极可能增加了5%~10%,20世纪下半叶严重降水发生频率可能增加了2%~4%[6]。近百年来的气候变化已经给全球自然生态系统和社会经济系统带来了重要影响。现有研究结果预测,未来50~100年全球气候将继续向变暖的方向发展。这种变化可能会对全球地质环境造成深远的影响,其影响可能是负面的或不利的。

(一)未来中国气候变化趋势

中国科学家对近100年和近50年中国的气候变化历史进行了系统研究,研究发现:中国的气候变化与全球变化有相当的一致性,但也存在明显差别。在全球气候变暖背景下,近100年来中国年地表平均气温明显增加,升温幅度约为0.5~0.8℃,比全球同期平均值略强;从全国平均来看,近100年和近50年的降水量趋势不明显,但1956年以来出现了微弱增加趋势;近50年来中国主要极端天气气候的频率和强度出现了明显变化,寒潮频数显著下降,华北和东北地区干旱趋重,长江中下游地区和东南地区洪涝加重[7]。

2007年1月,中华人民共和国科学技术部、中国气象局和中国科学院等部委联合发布了《气候变化国家评估报告》,系统总结了我国在气候变化方面的科研成果,评估了在全球气候变化背景下中国近百年来的气候变化观测事实及其影响,预测了21世纪的气候变化趋势。该报告预测,21世纪我国气候变化将呈现以下趋势[7]:

(1)气候变暖趋势不可避免。21世纪中国地表气温将继续上升,其中北方增温大于南方,冬春季增温大于夏秋季。气候模式模拟结果表明:与2000年比较,2020年中国年平均气温将增加1.1~2.1℃,2030年增加1.5~2.8℃,2050年增加2.3~3.3℃;降水量也呈增加趋势,预计到2020年,全国平均年降水量将增加2%~3%,到2050年可能增加5%~7%。降水日数在北方显著增加,南方变化大。

(2)气候变率增大。HadCM2模式模拟结果表明,在CO21%增长率情景下,2020年、2050年和2080年增温最大的月份与最小月份之差分别可达到0.8℃、1.0℃和1.3℃;在CO20.5%增长率情景下,虽然极端值的差别没有1%情景下的差别那样明显,但是也可以明显看出季节之间增温的幅度增大。随着温室气体浓度的增加,地面气温增量的年较差也不断增大。与地面气温增量的季节变化类似,降水量变化的年较差也随着温室气体浓度的增加而不断增大。

(3)极端天气气候增加。未来中国的极端天气气候发生频率可能出现变化。区域气候模式的预估结果表明,中国地区的日最高和最低气温都将升高,但最低气温的升高更为明显,气温日较差将进一步减小。未来南方的大雨日数将显著增加,暴雨天气可能会增多。

(二)气候变化对地质环境的影响

过去半个多世纪中国地质环境变化是在自然驱动因素和人为驱动因素共同作用下的结果。由于人类活动变化的剧烈性和持续性,地质环境变化更多地表现为人为驱动因素作用下的结果。气候变化所造成的地质环境变化,往往为人类活动干扰所掩盖,为研究工作带来了极大困难。目前,关于气候变化对环境影响的研究刚刚起步,定量评估方法和结果还存在很大的不确定性[7]。根据未来中国气候变化趋势,可以推断出对地质环境的可能影响,主要包括以下几个方面:

(1)大雨日数与强降水的增加,可能会诱发更多的突发性地质灾害。滑坡、崩塌、泥石流等突发性地质灾害主要是由暴雨所诱发的。据全国县、市地质灾害调查统计,暴雨所诱发的滑坡占所调查滑坡总数的90%,暴雨所诱发的崩塌占所调查崩塌总数的81%[8]。滑坡、崩塌、泥石流等突发性地质灾害发生频次与强降水呈正相关关系。区域气候模式模拟结果表明,在2070年前后,中国南方地区在温室效应作用下,大雨日数将显著增加,特别是在东南地区的福建和江西西部,以及西南地区的贵州和四川、云南部分地区,未来暴雨发生的天气会增多(表5-1)。强降水增多的地区,多是突发性地质灾害中、高易发区。所以,未来暴雨诱发的突发性地质灾害在一些地区可能呈现出增加的趋势。

表5-1 区域气候模式模拟的2070年中国各大区平均降水变化表单位:%

资料来源:据《气候变化国家评估报告》

(2)极端天气气候的增多,可能会导致对地下水的依赖程度增加。模拟结果表明,未来50~100年,北方部分省份(宁夏、甘肃、陕西、山西、河北等)多年平均径流深减少2%~4%,南方部分省份(湖北、湖南、江西、福建、广西、广东、云南等)增加24%,北方水短缺现状还将继续。对未来气候变化趋势的预估,未来20年中国夏季降水存在着由南涝北旱型向南旱北涝型转变的可能性。未来气候变率的增大和干旱、洪涝等极端天气气候的增加,可能对现有的水供给格局形成挑战,经济社会的水保障程度相应地受到影响。由于地下水时空分布具有相对广泛、均衡的特点,在降水与地表水变数增加的情况下,经济社会对地下水的依赖程度可能会有所增加,开地下水所诱发的地质环境问题亦随之增加。2009年秋至2010年春西南地区长达5个多月的干旱灾害,证实了这种可能性的存在。旱灾波及云南、贵州、广西、四川、重庆西南5个省(区),旱情持续时间之长、受灾面积之大、影响范围之广,为百年一遇。以云南省为例,2009年7月1日至2010年1月20日,平均降水量比多年同期偏少了29%,为气象观测记录以来同期最少降水量[9]。为解决旱灾造成的人畜饮水困难,各地启动了抗旱找水打井工作。据国土部统计,截至2010年6月,国土系统在云南、贵州、广西3省(区)的26个市(州)156个县(区),共完成2703眼,成井2348眼,累计日出水量36×104m3,解决了520万人饮水问题[10]。入汛以后,南方连续出现了8次大范围强降雨过程,广西大部、湖南南部、广东、福建、江西等地局部出现雨,降水量比往年多5成以上。受长时间干旱和短时间多次强降雨的作用,广西、四川、江西等地出现了多个“天坑”[11]。中国地质调查局经过调查认为:这些“天坑”实际上是地面塌陷,主要发生在岩溶区,因长期干旱、强降雨等气候因素和工程建设、地下水抽等人为活动引发形成。

(3)受海平面上升和极端气候影响,海岸带地质环境恶化风险加大。中国沿海海平面近50年来总体呈上升趋势,平均上升速率约为2.5mm/a[12]。据预测,未来气候变暖,入海河流水量的减少,将加重河口盐水入侵,海平原上升和入海河流泥沙量的减少,将加剧海岸侵蚀,黄河三角洲增长减缓,甚至衰退,海岸低地被淹的范围将可能增加[13]。海岸带是中国人口密集、经济发达的地区,应对全球变化对地质环境造成的负效应,应及早未雨绸缪。

全球变暖的现状

全球变暖的现状是很严重的,而且对于北极的动物们来说,一旦北极出现没有冰的情况的话,那么对于北极的动物们的生存是有很大威胁的,甚至有些动物因为熬不过无冰的夏季,直接出现灭绝的情况。虽说人类对于全球变暖的气候无法根除,但是也是可以缓解的,只不过因为气候的到来,所以当前最重要的便是对北极动物们的保护问题。

全球变暖的现状一天天严重了起来,而且因为气候变暖之后,即便是在南极和北极,当地的冻土层中的史前也已经有了复苏的迹象。而这对于人类来说,其实要面临的是很大的挑战毕竟,对于人类来说,一旦冻土层中的或者是细菌复苏的话,那么人类在未知的情况下,是很容易受到侵袭的。

而且因为人类对史前并不了解,甚至一无所知,所以如果冻土层真的融化的话,那么人类将要面临的是很大的生存挑战,而这不仅仅只是对于北极动物。因为全球气候变暖的原因,导致北极冰川一直都在不断的融化,而且对于北极的霸主北极熊来说,生存环境已经很堪忧了。

对于北极的动物们来说,一旦夏季没有冰层的话,那么这些动物们是否抵抗的过去炎热的夏天,而且夏天是非常炎热的,这些北极动物之所以适应北极的寒冷气候,其实也是因为自身的皮毛以及身上厚厚的脂肪。

其实,对于现在的地球环境来说,因为遭到了破坏之后,动物们的生存也受到了很大的威胁,而北极熊的数量已经在减少了。如果到时候北极真的变暖的话,那么对于北极的动物们来说,如果人类没有取措施的话,可能真的要灭绝了。

丹麦气候变化现状和趋势

自15年以来,地球表面的平均温度已经上升了0.9华氏度,由温室效应导致的全球变暖已 成了引起世人关注的焦点问题。学术界一直被公认的学说认为由于燃烧煤、石油、天然气等产生的二氧化碳是导致全球变暖的罪魁祸首。然而经过几十年的观察研究,来自美国Goddard空间研究所的詹姆斯·汉森博士提出新观点,认为温室气体主要不是二氧化碳,而是碳粒粉尘等物质。

碳粒粉尘是一种固体颗粒状物质,主要是由于燃烧煤和柴油等高碳量的燃料时碳利用率太低而造成的,它不仅浪费,更引起了环境的污染。众多的碳粒聚集在对流层中导致了云的堆积,而云的堆积便是温室效应的开始,因为40%至90%的地面热量来自由云层所产生的大气 逆辐射,云层越厚,热量越是不能向外扩散,地球也就越裹越热了。

汉森博士对于各种温室气体的含量变化都做了整理记录,发现在1950至10年间,二氧化碳 的含量增长了近两倍,而从70年代到90年代后期,二氧化碳含量则有所减少。用目前流行的理论很难解释仍在恶化的全球变暖的现象。

汉森博士认为,除了碳粒粉尘以外,还有一些气体物质能导致温室效应,如对流层中的臭氧 (正常的臭氧应集中在平流层中)、甲烷,还有巨毒无比的氯氟烃。但这些污染源的治理就相对困难些了。可喜的是,近几十年来非二氧化碳的温室气体含量已经有了一定的下降,如若 甲烷和对流层中的臭氧含量也能逐年下降趋势,那么再过50年,地球表面平均温度的变化将近乎零。

碳粒粉尘并不是不可避免的东西,随着内燃机品质的不断提高,甚或不使用内燃机的交通工 具的问世,不能烧尽而剩余的碳粒是可以减少的。汉森博士的学说能够成立,则给地球带来了降温的新希望,但愿地球早日退烧。

工业革命前大气中CO2含量是280ppm,如按目前增长的速度,到2100年CO2含量将增加到550ppm,即几乎增加一倍。全世界的许多气象学家都在努力研究,CO2含量增加一倍以后,到2100年全球的平均气温会增高多少?

目前用的具体办法是,根据大气运动规律和物理状态变化规律,设计成数值模式进行计算。不过,由于人们对大气运动变化规律认识得还不够完善,取的简化计算办法不同,各个模式的计算结果常相差很大。为此,80年代美国科学院组织了评估委员会,对这些模式的结果进行研究和综合评估,最终得出CO2倍增后全球平均气温将上升3℃土1.5℃,即1.5℃-4.5℃。这就是对本问题最有权威的组织--联合国IPCC第一次《报告》中用的数字。

近年来,气候模式的模拟能力有了重大改进,这主要是考虑了大气中气溶胶(空气中悬浮的微小颗粒)的作用。因为在燃烧化石燃料放出CO2的同时也释放出了巨量的硫化物等气溶胶。这种气溶胶会遮挡部分阳光到达地面,因此使地面气温降低,起到冷却作用。其数值据IPCC估计可达-0.5瓦/米2。即相当于CO2增温效应(1.56瓦/米2)的1/3,比甲烷的增温效应(+0.47瓦/米2)还略大。主要根据这个改进,IPCC在l996年公布的第二个《报告》中,把2100年CO2倍增后全球平均气温的升温值从1.5℃-4.5℃,修改为1.0℃-3.5℃。评估报告中还指出,由于海洋的巨大热惯性,到2100年这个增温值中大约只有50%-90%得以实现。

然而,模式计算结果还说明,全球平均增温1.0℃-3.5℃不均匀分布于世界各地,而是赤道和热带地区不升温或几乎不升温,升温主要集中在高纬度地区,数量可达6℃-8℃甚至更大。这一来便引起另一严重后果,即两极和格陵兰的冰盖会发生融化,引起海平面上升。北半球高纬度大陆的冻土带也会融化或变薄,引起大范围地区沼泽化。还有,海洋变暖后海水体积膨胀也会引起海平面升高。IPCC的第一次评估报告中预计海平面上升70-140厘米(相应升温1.5℃-4.5℃),第二次评估报告中比第一次评估结果降低了约25% (相应升温1.0℃一3.5℃),最可能值为50厘米。IPCC的第二次评估报告还指出,从19世纪末以来的百年间,由于全球平均气温上升了0.3℃-0.6℃,因而全球海平面相应也上升了10-25厘米。

全球海平面的上升将直接淹没人口密集、工农业发达的大陆沿海低地地区,因此后果十分严重。1995年11月在柏林召开的联合国《气候变化框架公约》缔约方第二次会议上,44个小岛国组成了小岛国联盟,为他们的生存权而呼吁。

此外,研究结果还指出,CO2增加不仅使全球变暖,还将造成全球大气环流调整和气候带向极地扩展。包括我国北方在内的中纬度地区降水将减少,加上升温使蒸发加大,因此气候将趋干旱化。大气环流的调整,除了中纬度干旱化之外,还可能造成世界其他地区气候异常和灾害。例如,低纬度台风强度将增强,台风源地将向北扩展等。气温升高还会引起和加剧传染病流行等。以疟疾为例,过去5年中世界疟疾发病率已翻了两番,现在全世界每年约有5亿人得疟疾,其中200多万人死亡。

但是,温室效应也并非全是坏事。因为最寒冷的高纬度地区增温最大,因而农业区将向极地大幅度推进。CO2增加也有利于植物光合作用而直接提高有机物产量。还有论文指出,在我国和世界历史时期中温暖期多是降水较多、干旱区退缩的繁荣时期,等等。

当然,在大气温室效应这个问题上,也有不同意见。例如,过去有些科学家认为目前数值模式还不成熟,计算结果过于夸大;百年升高0.3℃-0.6℃属于正常气候变化,不能证明是大气温室效应所造成,等等。当然这是少数人的意见。

尽管如此,但对于目前大气中CO2浓度和全球温度正迅速增加,以及温室气体增加会造成全球变暖的原理,都是没有争论的事实。我们如果等到问题发展到了人类可以明显感知的水平,这时候往往已经难以逆转,那么就为时已晚。因此现在就必须引起高度重视,以便取对策,保护好人类赖以生存的大气环境。

 我国全球变化研究现状及展望

丹麦属温带海洋性气候。平均气温1月-2.4℃ ,8月14.6℃。年均降水量约860毫米。丹麦并不象人们想象的那么冷,大部分地区气候与我国相似。丹麦的气候介于北欧和中欧之间,属温带海洋性气候。由于受到大西洋吹来的西南风影响,丹麦气候冬暖夏凉,最热的7月平均气温不过15度至17度。

由于我国具有独特的地质和地理条件,以及在全球所处的重要地理位置,我国地球科学家敏锐地认识到,积极参与全球变化这一前沿科学领域研究对我国社会、经济可持续发展的现实意义和地球科学发展的推动作用,不仅参与了IGBP有关核心项目的研究,如“过去全球变化”,在其他领域,如海洋、土壤、土地利用/土地覆被、数据信息系统建设等也积极开展了研究,取得了显著的成果,为全球变化研究作出了重要的贡献。总体来说,我国的全球变化研究紧紧瞄准科学前沿,有些方面还走在世界的前沿。

我国的干旱和半干旱区是研究全球变化的关键地区,因此组织了“干旱半干旱区150ka来环境演变的动态过程及发展趋势”(1992~19)的研究。通过有代表性的环境地质剖面和东西向大断面,建立了高分辨率黄土、湖泊等陆相沉积物古气候记录的时间标尺,重建了150ka来环境演变序列及动态过程,揭示出西太平洋边缘的海洋因素是冰期时我国内陆干旱的原因之一,提出了东亚古季风变化动力机制的概念模型,并运用“时域组合模型”等数学手段,对我国北方干旱半干旱区未来演变趋势做了统计学的外推。这项成果被认为列入世界前列。

“中国北方晚更新世以来地质环境演化及其未来生存环境变化趋势预测”项目(1992~1995)重点研究了晚更新世以来,特别是全新世及最近2~3ka以来的环境、气候演变,研究在构造运动、气候因素及人类活动影响下,陆地水系统和土地系统发生、发展和变化趋势,重塑和编制了青藏高原-黄土高原-华北平原至渤海沿岸东西大断面的古气候、古环境,提出了北方20ka来古气候变化模式并预测今后50a以地下水和土地为主的生存环境。

在南北半球古气候(PANASH)3条南北半球研究断面中,我国是PEPI断面的主要负责人之一。这条断面包含了许多独特的环境,如继续不断隆升的青藏高原,世界上最大的海洋暖池——西太平洋暖池,最大的季风区——亚洲季风区,最大的中纬度沙漠等,还有保存良好长序列记录的黄土、洞穴、高原湖泊沉积等优势支柱。可望在高分辨率重建古环境变化历史和古季风环流作用机制等重大问题上有突破性的进展。此外,在前述全球碳循环的源汇研究方面,中国揭示了通过碳酸盐岩岩溶作用回收大气碳的重要过程并作了定量的估算。

有关全球变化数据管理方面,我国已参加了WDC(世界数据中心),并相应在WDC-D中建立了9个学科中心:海洋、气象、地质、地震、冰川冻土、天文、地球物理、空间物理、可再生与环境学科中心等,它们已为全球变化研究提供了许多诸如海平面变化、高亚洲寒区地理信息系统、和环境方面的数据和资料服务。

10年(1985~1995)来,据统计,我国全球变化研究项目已达350项左右,其中一些跨学科的重大项目,如“全球气候变化预测、影响和对策研究”,“我国未来(20~50年)生存环境变化趋势的预测研究”,“灾害性气候的预测及其对农业年景和水的影响”。这些研究成果都获得了国内外的高度评价。

结合国际全球变化的研究重点方向和我国的优势和特点在已取得的富有成效的研究基础上,应在以下几方面继续努力,以求有更进一步的提高和突破。

(1)大力支持南北半球古气候耦合机制已开展的PEPⅡ研究。现国家自然科学基金“九五”重大项目“我国季风区古环境变化机制及其与全球变化的动力学联系”已列入PEPⅡ执行之中。这对加强古环境的研究是一个重要措施。

(2)青藏高原和极地对全球及邻区变化的影响研究。青藏高原的隆升已极大地改变了亚洲大气环流的形势。中国西北部进一步变干旱,东部湿润。青藏高原现仍在继续隆升,又处于中国境内,我国地学家应进一步研究高原的隆升机制,以预测对中国地质环境和气候将产生的变化趋势,乃至对全球变化的影响。

(3)继续发挥我国全球变化地质记录重要支柱的优势作用,加强黄土、岩溶洞穴沉积、湖泊沉积等地质记录与古环境变化的研究。

(4)全球变化研究的数据信息系统建设和数据共享。现我国除9个学科数据中心外,还有一些观测台网,如中国生态系统研究网络包括了29个野外研究台站以及4个分中心和1个综合中心。在此基础上,进一步完善遥感与地理信息系统、海洋观测系统,建立海洋、环境数据库和管理信息系统等。数据共享难度较大,更需加强管理协调以便充分利用,以免工作重复,造成浪费。